# Ultralytics YOLO 🚀, AGPL-3.0 license """ Run prediction on images, videos, directories, globs, YouTube, webcam, streams, etc. Usage - sources: $ yolo mode=predict model=yolov8n.pt source=0 # webcam img.jpg # image vid.mp4 # video screen # screenshot path/ # directory list.txt # list of images list.streams # list of streams 'path/*.jpg' # glob 'https://youtu.be/LNwODJXcvt4' # YouTube 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP, TCP stream Usage - formats: $ yolo mode=predict model=yolov8n.pt # PyTorch yolov8n.torchscript # TorchScript yolov8n.onnx # ONNX Runtime or OpenCV DNN with dnn=True yolov8n_openvino_model # OpenVINO yolov8n.engine # TensorRT yolov8n.mlpackage # CoreML (macOS-only) yolov8n_saved_model # TensorFlow SavedModel yolov8n.pb # TensorFlow GraphDef yolov8n.tflite # TensorFlow Lite yolov8n_edgetpu.tflite # TensorFlow Edge TPU yolov8n_paddle_model # PaddlePaddle yolov8n_ncnn_model # NCNN """ import platform import re import threading from pathlib import Path import cv2 import numpy as np import torch from ultralytics.cfg import get_cfg, get_save_dir from ultralytics.data import load_inference_source from ultralytics.data.augment import LetterBox, classify_transforms from ultralytics.nn.autobackend import AutoBackend from ultralytics.utils import DEFAULT_CFG, LOGGER, MACOS, WINDOWS, callbacks, colorstr, ops from ultralytics.utils.checks import check_imgsz, check_imshow from ultralytics.utils.files import increment_path from ultralytics.utils.torch_utils import select_device, smart_inference_mode STREAM_WARNING = """ WARNING ⚠️ inference results will accumulate in RAM unless `stream=True` is passed, causing potential out-of-memory errors for large sources or long-running streams and videos. See https://docs.ultralytics.com/modes/predict/ for help. Example: results = model(source=..., stream=True) # generator of Results objects for r in results: boxes = r.boxes # Boxes object for bbox outputs masks = r.masks # Masks object for segment masks outputs probs = r.probs # Class probabilities for classification outputs """ class BasePredictor: """ BasePredictor. A base class for creating predictors. Attributes: args (SimpleNamespace): Configuration for the predictor. save_dir (Path): Directory to save results. done_warmup (bool): Whether the predictor has finished setup. model (nn.Module): Model used for prediction. data (dict): Data configuration. device (torch.device): Device used for prediction. dataset (Dataset): Dataset used for prediction. vid_writer (dict): Dictionary of {save_path: video_writer, ...} writer for saving video output. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the BasePredictor class. Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None. """ self.args = get_cfg(cfg, overrides) self.save_dir = get_save_dir(self.args) if self.args.conf is None: self.args.conf = 0.25 # default conf=0.25 self.done_warmup = False if self.args.show: self.args.show = check_imshow(warn=True) # Usable if setup is done self.model = None self.data = self.args.data # data_dict self.imgsz = None self.device = None self.dataset = None self.vid_writer = {} # dict of {save_path: video_writer, ...} self.plotted_img = None self.source_type = None self.seen = 0 self.windows = [] self.batch = None self.results = None self.transforms = None self.callbacks = _callbacks or callbacks.get_default_callbacks() self.txt_path = None self._lock = threading.Lock() # for automatic thread-safe inference callbacks.add_integration_callbacks(self) def preprocess(self, im): """ Prepares input image before inference. Args: im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list. """ not_tensor = not isinstance(im, torch.Tensor) if not_tensor: im = np.stack(self.pre_transform(im)) im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w) im = np.ascontiguousarray(im) # contiguous im = torch.from_numpy(im) im = im.to(self.device) im = im.half() if self.model.fp16 else im.float() # uint8 to fp16/32 if not_tensor: im /= 255 # 0 - 255 to 0.0 - 1.0 return im def inference(self, im, *args, **kwargs): """Runs inference on a given image using the specified model and arguments.""" visualize = ( increment_path(self.save_dir / Path(self.batch[0][0]).stem, mkdir=True) if self.args.visualize and (not self.source_type.tensor) else False ) return self.model(im, augment=self.args.augment, visualize=visualize, embed=self.args.embed, *args, **kwargs) def pre_transform(self, im): """ Pre-transform input image before inference. Args: im (List(np.ndarray)): (N, 3, h, w) for tensor, [(h, w, 3) x N] for list. Returns: (list): A list of transformed images. """ same_shapes = len({x.shape for x in im}) == 1 letterbox = LetterBox(self.imgsz, auto=same_shapes and self.model.pt, stride=self.model.stride) return [letterbox(image=x) for x in im] def postprocess(self, preds, img, orig_imgs): """Post-processes predictions for an image and returns them.""" return preds def __call__(self, source=None, model=None, stream=False, *args, **kwargs): """Performs inference on an image or stream.""" self.stream = stream if stream: return self.stream_inference(source, model, *args, **kwargs) else: return list(self.stream_inference(source, model, *args, **kwargs)) # merge list of Result into one def predict_cli(self, source=None, model=None): """ Method used for Command Line Interface (CLI) prediction. This function is designed to run predictions using the CLI. It sets up the source and model, then processes the inputs in a streaming manner. This method ensures that no outputs accumulate in memory by consuming the generator without storing results. Note: Do not modify this function or remove the generator. The generator ensures that no outputs are accumulated in memory, which is critical for preventing memory issues during long-running predictions. """ gen = self.stream_inference(source, model) for _ in gen: # sourcery skip: remove-empty-nested-block, noqa pass def setup_source(self, source): """Sets up source and inference mode.""" self.imgsz = check_imgsz(self.args.imgsz, stride=self.model.stride, min_dim=2) # check image size self.transforms = ( getattr( self.model.model, "transforms", classify_transforms(self.imgsz[0], crop_fraction=self.args.crop_fraction), ) if self.args.task == "classify" else None ) self.dataset = load_inference_source( source=source, batch=self.args.batch, vid_stride=self.args.vid_stride, buffer=self.args.stream_buffer, ) self.source_type = self.dataset.source_type if not getattr(self, "stream", True) and ( self.source_type.stream or self.source_type.screenshot or len(self.dataset) > 1000 # many images or any(getattr(self.dataset, "video_flag", [False])) ): # videos LOGGER.warning(STREAM_WARNING) self.vid_writer = {} @smart_inference_mode() def stream_inference(self, source=None, model=None, *args, **kwargs): """Streams real-time inference on camera feed and saves results to file.""" if self.args.verbose: LOGGER.info("") # Setup model if not self.model: self.setup_model(model) with self._lock: # for thread-safe inference # Setup source every time predict is called self.setup_source(source if source is not None else self.args.source) # Check if save_dir/ label file exists if self.args.save or self.args.save_txt: (self.save_dir / "labels" if self.args.save_txt else self.save_dir).mkdir(parents=True, exist_ok=True) # Warmup model if not self.done_warmup: self.model.warmup(imgsz=(1 if self.model.pt or self.model.triton else self.dataset.bs, 3, *self.imgsz)) self.done_warmup = True self.seen, self.windows, self.batch = 0, [], None profilers = ( ops.Profile(device=self.device), ops.Profile(device=self.device), ops.Profile(device=self.device), ) self.run_callbacks("on_predict_start") for self.batch in self.dataset: self.run_callbacks("on_predict_batch_start") paths, im0s, s = self.batch # Preprocess with profilers[0]: im = self.preprocess(im0s) # Inference with profilers[1]: preds = self.inference(im, *args, **kwargs) if self.args.embed: yield from [preds] if isinstance(preds, torch.Tensor) else preds # yield embedding tensors continue # Postprocess with profilers[2]: self.results = self.postprocess(preds, im, im0s) self.run_callbacks("on_predict_postprocess_end") # Visualize, save, write results n = len(im0s) for i in range(n): self.seen += 1 self.results[i].speed = { "preprocess": profilers[0].dt * 1e3 / n, "inference": profilers[1].dt * 1e3 / n, "postprocess": profilers[2].dt * 1e3 / n, } if self.args.verbose or self.args.save or self.args.save_txt or self.args.show: s[i] += self.write_results(i, Path(paths[i]), im, s) # Print batch results if self.args.verbose: LOGGER.info("\n".join(s)) self.run_callbacks("on_predict_batch_end") yield from self.results # Release assets for v in self.vid_writer.values(): if isinstance(v, cv2.VideoWriter): v.release() # Print final results if self.args.verbose and self.seen: t = tuple(x.t / self.seen * 1e3 for x in profilers) # speeds per image LOGGER.info( f"Speed: %.1fms preprocess, %.1fms inference, %.1fms postprocess per image at shape " f"{(min(self.args.batch, self.seen), 3, *im.shape[2:])}" % t ) if self.args.save or self.args.save_txt or self.args.save_crop: nl = len(list(self.save_dir.glob("labels/*.txt"))) # number of labels s = f"\n{nl} label{'s' * (nl > 1)} saved to {self.save_dir / 'labels'}" if self.args.save_txt else "" LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}{s}") self.run_callbacks("on_predict_end") def setup_model(self, model, verbose=True): """Initialize YOLO model with given parameters and set it to evaluation mode.""" self.model = AutoBackend( weights=model or self.args.model, device=select_device(self.args.device, verbose=verbose), dnn=self.args.dnn, data=self.args.data, fp16=self.args.half, batch=self.args.batch, fuse=True, verbose=verbose, ) self.device = self.model.device # update device self.args.half = self.model.fp16 # update half self.model.eval() def write_results(self, i, p, im, s): """Write inference results to a file or directory.""" string = "" # print string if len(im.shape) == 3: im = im[None] # expand for batch dim if self.source_type.stream or self.source_type.from_img or self.source_type.tensor: # batch_size >= 1 string += f"{i}: " frame = self.dataset.count else: match = re.search(r"frame (\d+)/", s[i]) frame = int(match[1]) if match else None # 0 if frame undetermined self.txt_path = self.save_dir / "labels" / (p.stem + ("" if self.dataset.mode == "image" else f"_{frame}")) string += "%gx%g " % im.shape[2:] result = self.results[i] result.save_dir = self.save_dir.__str__() # used in other locations string += f"{result.verbose()}{result.speed['inference']:.1f}ms" # Add predictions to image if self.args.save or self.args.show: self.plotted_img = result.plot( line_width=self.args.line_width, boxes=self.args.show_boxes, conf=self.args.show_conf, labels=self.args.show_labels, im_gpu=None if self.args.retina_masks else im[i], ) # Save results if self.args.save_txt: result.save_txt(f"{self.txt_path}.txt", save_conf=self.args.save_conf) if self.args.save_crop: result.save_crop(save_dir=self.save_dir / "crops", file_name=self.txt_path.stem) if self.args.show: self.show(str(p)) if self.args.save: self.save_predicted_images(str(self.save_dir / p.name), frame) return string def save_predicted_images(self, save_path="", frame=0): """Save video predictions as mp4 at specified path.""" im = self.plotted_img # Save videos and streams if self.dataset.mode in {"stream", "video"}: fps = self.dataset.fps if self.dataset.mode == "video" else 30 frames_path = f'{save_path.split(".", 1)[0]}_frames/' if save_path not in self.vid_writer: # new video if self.args.save_frames: Path(frames_path).mkdir(parents=True, exist_ok=True) suffix, fourcc = (".mp4", "avc1") if MACOS else (".avi", "WMV2") if WINDOWS else (".avi", "MJPG") self.vid_writer[save_path] = cv2.VideoWriter( filename=str(Path(save_path).with_suffix(suffix)), fourcc=cv2.VideoWriter_fourcc(*fourcc), fps=fps, # integer required, floats produce error in MP4 codec frameSize=(im.shape[1], im.shape[0]), # (width, height) ) # Save video self.vid_writer[save_path].write(im) if self.args.save_frames: cv2.imwrite(f"{frames_path}{frame}.jpg", im) # Save images else: cv2.imwrite(save_path, im) def show(self, p=""): """Display an image in a window using OpenCV imshow().""" im = self.plotted_img if platform.system() == "Linux" and p not in self.windows: self.windows.append(p) cv2.namedWindow(p, cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux) cv2.resizeWindow(p, im.shape[1], im.shape[0]) # (width, height) cv2.imshow(p, im) cv2.waitKey(300 if self.dataset.mode == "image" else 1) # 1 millisecond def run_callbacks(self, event: str): """Runs all registered callbacks for a specific event.""" for callback in self.callbacks.get(event, []): callback(self) def add_callback(self, event: str, func): """Add callback.""" self.callbacks[event].append(func)