# Ultralytics YOLO 🚀, AGPL-3.0 license """ Train a model on a dataset. Usage: $ yolo mode=train model=yolov8n.pt data=coco8.yaml imgsz=640 epochs=100 batch=16 """ import gc import math import os import subprocess import time import warnings from copy import deepcopy from datetime import datetime, timedelta from pathlib import Path import numpy as np import torch from torch import distributed as dist from torch import nn, optim from ultralytics.cfg import get_cfg, get_save_dir from ultralytics.data.utils import check_cls_dataset, check_det_dataset from ultralytics.nn.tasks import attempt_load_one_weight, attempt_load_weights from ultralytics.utils import ( DEFAULT_CFG, LOGGER, RANK, TQDM, __version__, callbacks, clean_url, colorstr, emojis, yaml_save, ) from ultralytics.utils.autobatch import check_train_batch_size from ultralytics.utils.checks import check_amp, check_file, check_imgsz, check_model_file_from_stem, print_args from ultralytics.utils.dist import ddp_cleanup, generate_ddp_command from ultralytics.utils.files import get_latest_run from ultralytics.utils.torch_utils import ( EarlyStopping, ModelEMA, autocast, convert_optimizer_state_dict_to_fp16, init_seeds, one_cycle, select_device, strip_optimizer, torch_distributed_zero_first, ) class BaseTrainer: """ BaseTrainer. A base class for creating trainers. Attributes: args (SimpleNamespace): Configuration for the trainer. validator (BaseValidator): Validator instance. model (nn.Module): Model instance. callbacks (defaultdict): Dictionary of callbacks. save_dir (Path): Directory to save results. wdir (Path): Directory to save weights. last (Path): Path to the last checkpoint. best (Path): Path to the best checkpoint. save_period (int): Save checkpoint every x epochs (disabled if < 1). batch_size (int): Batch size for training. epochs (int): Number of epochs to train for. start_epoch (int): Starting epoch for training. device (torch.device): Device to use for training. amp (bool): Flag to enable AMP (Automatic Mixed Precision). scaler (amp.GradScaler): Gradient scaler for AMP. data (str): Path to data. trainset (torch.utils.data.Dataset): Training dataset. testset (torch.utils.data.Dataset): Testing dataset. ema (nn.Module): EMA (Exponential Moving Average) of the model. resume (bool): Resume training from a checkpoint. lf (nn.Module): Loss function. scheduler (torch.optim.lr_scheduler._LRScheduler): Learning rate scheduler. best_fitness (float): The best fitness value achieved. fitness (float): Current fitness value. loss (float): Current loss value. tloss (float): Total loss value. loss_names (list): List of loss names. csv (Path): Path to results CSV file. """ def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): """ Initializes the BaseTrainer class. Args: cfg (str, optional): Path to a configuration file. Defaults to DEFAULT_CFG. overrides (dict, optional): Configuration overrides. Defaults to None. """ self.args = get_cfg(cfg, overrides) self.check_resume(overrides) self.device = select_device(self.args.device, self.args.batch) self.validator = None self.metrics = None self.plots = {} init_seeds(self.args.seed + 1 + RANK, deterministic=self.args.deterministic) # Dirs self.save_dir = get_save_dir(self.args) self.args.name = self.save_dir.name # update name for loggers self.wdir = self.save_dir / "weights" # weights dir if RANK in {-1, 0}: self.wdir.mkdir(parents=True, exist_ok=True) # make dir self.args.save_dir = str(self.save_dir) yaml_save(self.save_dir / "args.yaml", vars(self.args)) # save run args self.last, self.best = self.wdir / "last.pt", self.wdir / "best.pt" # checkpoint paths self.save_period = self.args.save_period self.batch_size = self.args.batch self.epochs = self.args.epochs self.start_epoch = 0 if RANK == -1: print_args(vars(self.args)) # Device if self.device.type in {"cpu", "mps"}: self.args.workers = 0 # faster CPU training as time dominated by inference, not dataloading # Model and Dataset self.model = check_model_file_from_stem(self.args.model) # add suffix, i.e. yolov8n -> yolov8n.pt with torch_distributed_zero_first(RANK): # avoid auto-downloading dataset multiple times self.trainset, self.testset = self.get_dataset() self.ema = None # Optimization utils init self.lf = None self.scheduler = None # Epoch level metrics self.best_fitness = None self.fitness = None self.loss = None self.tloss = None self.loss_names = ["Loss"] self.csv = self.save_dir / "results.csv" self.plot_idx = [0, 1, 2] # HUB self.hub_session = None # Callbacks self.callbacks = _callbacks or callbacks.get_default_callbacks() if RANK in {-1, 0}: callbacks.add_integration_callbacks(self) def add_callback(self, event: str, callback): """Appends the given callback.""" self.callbacks[event].append(callback) def set_callback(self, event: str, callback): """Overrides the existing callbacks with the given callback.""" self.callbacks[event] = [callback] def run_callbacks(self, event: str): """Run all existing callbacks associated with a particular event.""" for callback in self.callbacks.get(event, []): callback(self) def train(self): """Allow device='', device=None on Multi-GPU systems to default to device=0.""" if isinstance(self.args.device, str) and len(self.args.device): # i.e. device='0' or device='0,1,2,3' world_size = len(self.args.device.split(",")) elif isinstance(self.args.device, (tuple, list)): # i.e. device=[0, 1, 2, 3] (multi-GPU from CLI is list) world_size = len(self.args.device) elif torch.cuda.is_available(): # i.e. device=None or device='' or device=number world_size = 1 # default to device 0 else: # i.e. device='cpu' or 'mps' world_size = 0 # Run subprocess if DDP training, else train normally if world_size > 1 and "LOCAL_RANK" not in os.environ: # Argument checks if self.args.rect: LOGGER.warning("WARNING ⚠️ 'rect=True' is incompatible with Multi-GPU training, setting 'rect=False'") self.args.rect = False if self.args.batch < 1.0: LOGGER.warning( "WARNING ⚠️ 'batch<1' for AutoBatch is incompatible with Multi-GPU training, setting " "default 'batch=16'" ) self.args.batch = 16 # Command cmd, file = generate_ddp_command(world_size, self) try: LOGGER.info(f'{colorstr("DDP:")} debug command {" ".join(cmd)}') subprocess.run(cmd, check=True) except Exception as e: raise e finally: ddp_cleanup(self, str(file)) else: self._do_train(world_size) def _setup_scheduler(self): """Initialize training learning rate scheduler.""" if self.args.cos_lr: self.lf = one_cycle(1, self.args.lrf, self.epochs) # cosine 1->hyp['lrf'] else: self.lf = lambda x: max(1 - x / self.epochs, 0) * (1.0 - self.args.lrf) + self.args.lrf # linear self.scheduler = optim.lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf) def _setup_ddp(self, world_size): """Initializes and sets the DistributedDataParallel parameters for training.""" torch.cuda.set_device(RANK) self.device = torch.device("cuda", RANK) # LOGGER.info(f'DDP info: RANK {RANK}, WORLD_SIZE {world_size}, DEVICE {self.device}') os.environ["TORCH_NCCL_BLOCKING_WAIT"] = "1" # set to enforce timeout dist.init_process_group( backend="nccl" if dist.is_nccl_available() else "gloo", timeout=timedelta(seconds=10800), # 3 hours rank=RANK, world_size=world_size, ) def _setup_train(self, world_size): """Builds dataloaders and optimizer on correct rank process.""" # Model self.run_callbacks("on_pretrain_routine_start") ckpt = self.setup_model() self.model = self.model.to(self.device) self.set_model_attributes() # Freeze layers freeze_list = ( self.args.freeze if isinstance(self.args.freeze, list) else range(self.args.freeze) if isinstance(self.args.freeze, int) else [] ) always_freeze_names = [".dfl"] # always freeze these layers freeze_layer_names = [f"model.{x}." for x in freeze_list] + always_freeze_names for k, v in self.model.named_parameters(): # v.register_hook(lambda x: torch.nan_to_num(x)) # NaN to 0 (commented for erratic training results) if any(x in k for x in freeze_layer_names): LOGGER.info(f"Freezing layer '{k}'") v.requires_grad = False elif not v.requires_grad and v.dtype.is_floating_point: # only floating point Tensor can require gradients LOGGER.info( f"WARNING ⚠️ setting 'requires_grad=True' for frozen layer '{k}'. " "See ultralytics.engine.trainer for customization of frozen layers." ) v.requires_grad = True # Check AMP self.amp = torch.tensor(self.args.amp).to(self.device) # True or False if self.amp and RANK in {-1, 0}: # Single-GPU and DDP callbacks_backup = callbacks.default_callbacks.copy() # backup callbacks as check_amp() resets them self.amp = torch.tensor(check_amp(self.model), device=self.device) callbacks.default_callbacks = callbacks_backup # restore callbacks if RANK > -1 and world_size > 1: # DDP dist.broadcast(self.amp, src=0) # broadcast the tensor from rank 0 to all other ranks (returns None) self.amp = bool(self.amp) # as boolean self.scaler = torch.cuda.amp.GradScaler(enabled=self.amp) if world_size > 1: self.model = nn.parallel.DistributedDataParallel(self.model, device_ids=[RANK], find_unused_parameters=True) # Check imgsz gs = max(int(self.model.stride.max() if hasattr(self.model, "stride") else 32), 32) # grid size (max stride) self.args.imgsz = check_imgsz(self.args.imgsz, stride=gs, floor=gs, max_dim=1) self.stride = gs # for multiscale training # Batch size if self.batch_size < 1 and RANK == -1: # single-GPU only, estimate best batch size self.args.batch = self.batch_size = check_train_batch_size( model=self.model, imgsz=self.args.imgsz, amp=self.amp, batch=self.batch_size, ) # Dataloaders batch_size = self.batch_size // max(world_size, 1) self.train_loader = self.get_dataloader(self.trainset, batch_size=batch_size, rank=RANK, mode="train") if RANK in {-1, 0}: # Note: When training DOTA dataset, double batch size could get OOM on images with >2000 objects. self.test_loader = self.get_dataloader( self.testset, batch_size=batch_size if self.args.task == "obb" else batch_size * 2, rank=-1, mode="val" ) self.validator = self.get_validator() metric_keys = self.validator.metrics.keys + self.label_loss_items(prefix="val") self.metrics = dict(zip(metric_keys, [0] * len(metric_keys))) self.ema = ModelEMA(self.model) if self.args.plots: self.plot_training_labels() # Optimizer self.accumulate = max(round(self.args.nbs / self.batch_size), 1) # accumulate loss before optimizing weight_decay = self.args.weight_decay * self.batch_size * self.accumulate / self.args.nbs # scale weight_decay iterations = math.ceil(len(self.train_loader.dataset) / max(self.batch_size, self.args.nbs)) * self.epochs self.optimizer = self.build_optimizer( model=self.model, name=self.args.optimizer, lr=self.args.lr0, momentum=self.args.momentum, decay=weight_decay, iterations=iterations, ) # Scheduler self._setup_scheduler() self.stopper, self.stop = EarlyStopping(patience=self.args.patience), False self.resume_training(ckpt) self.scheduler.last_epoch = self.start_epoch - 1 # do not move self.run_callbacks("on_pretrain_routine_end") def _do_train(self, world_size=1): """Train completed, evaluate and plot if specified by arguments.""" if world_size > 1: self._setup_ddp(world_size) self._setup_train(world_size) nb = len(self.train_loader) # number of batches nw = max(round(self.args.warmup_epochs * nb), 100) if self.args.warmup_epochs > 0 else -1 # warmup iterations last_opt_step = -1 self.epoch_time = None self.epoch_time_start = time.time() self.train_time_start = time.time() self.run_callbacks("on_train_start") LOGGER.info( f'Image sizes {self.args.imgsz} train, {self.args.imgsz} val\n' f'Using {self.train_loader.num_workers * (world_size or 1)} dataloader workers\n' f"Logging results to {colorstr('bold', self.save_dir)}\n" f'Starting training for ' + (f"{self.args.time} hours..." if self.args.time else f"{self.epochs} epochs...") ) if self.args.close_mosaic: base_idx = (self.epochs - self.args.close_mosaic) * nb self.plot_idx.extend([base_idx, base_idx + 1, base_idx + 2]) epoch = self.start_epoch self.optimizer.zero_grad() # zero any resumed gradients to ensure stability on train start while True: self.epoch = epoch self.run_callbacks("on_train_epoch_start") with warnings.catch_warnings(): warnings.simplefilter("ignore") # suppress 'Detected lr_scheduler.step() before optimizer.step()' self.scheduler.step() self.model.train() if RANK != -1: self.train_loader.sampler.set_epoch(epoch) pbar = enumerate(self.train_loader) # Update dataloader attributes (optional) if epoch == (self.epochs - self.args.close_mosaic): self._close_dataloader_mosaic() self.train_loader.reset() if RANK in {-1, 0}: LOGGER.info(self.progress_string()) pbar = TQDM(enumerate(self.train_loader), total=nb) self.tloss = None for i, batch in pbar: self.run_callbacks("on_train_batch_start") # Warmup ni = i + nb * epoch if ni <= nw: xi = [0, nw] # x interp self.accumulate = max(1, int(np.interp(ni, xi, [1, self.args.nbs / self.batch_size]).round())) for j, x in enumerate(self.optimizer.param_groups): # Bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0 x["lr"] = np.interp( ni, xi, [self.args.warmup_bias_lr if j == 0 else 0.0, x["initial_lr"] * self.lf(epoch)] ) if "momentum" in x: x["momentum"] = np.interp(ni, xi, [self.args.warmup_momentum, self.args.momentum]) # Forward with autocast(self.amp): batch = self.preprocess_batch(batch) self.loss, self.loss_items = self.model(batch) if RANK != -1: self.loss *= world_size self.tloss = ( (self.tloss * i + self.loss_items) / (i + 1) if self.tloss is not None else self.loss_items ) # Backward self.scaler.scale(self.loss).backward() # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html if ni - last_opt_step >= self.accumulate: self.optimizer_step() last_opt_step = ni # Timed stopping if self.args.time: self.stop = (time.time() - self.train_time_start) > (self.args.time * 3600) if RANK != -1: # if DDP training broadcast_list = [self.stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks self.stop = broadcast_list[0] if self.stop: # training time exceeded break # Log mem = f"{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G" # (GB) loss_len = self.tloss.shape[0] if len(self.tloss.shape) else 1 losses = self.tloss if loss_len > 1 else torch.unsqueeze(self.tloss, 0) if RANK in {-1, 0}: pbar.set_description( ("%11s" * 2 + "%11.4g" * (2 + loss_len)) % (f"{epoch + 1}/{self.epochs}", mem, *losses, batch["cls"].shape[0], batch["img"].shape[-1]) ) self.run_callbacks("on_batch_end") if self.args.plots and ni in self.plot_idx: self.plot_training_samples(batch, ni) self.run_callbacks("on_train_batch_end") self.lr = {f"lr/pg{ir}": x["lr"] for ir, x in enumerate(self.optimizer.param_groups)} # for loggers self.run_callbacks("on_train_epoch_end") if RANK in {-1, 0}: final_epoch = epoch + 1 >= self.epochs self.ema.update_attr(self.model, include=["yaml", "nc", "args", "names", "stride", "class_weights"]) # Validation if self.args.val or final_epoch or self.stopper.possible_stop or self.stop: self.metrics, self.fitness = self.validate() self.save_metrics(metrics={**self.label_loss_items(self.tloss), **self.metrics, **self.lr}) self.stop |= self.stopper(epoch + 1, self.fitness) or final_epoch if self.args.time: self.stop |= (time.time() - self.train_time_start) > (self.args.time * 3600) # Save model if self.args.save or final_epoch: self.save_model() self.run_callbacks("on_model_save") # Scheduler t = time.time() self.epoch_time = t - self.epoch_time_start self.epoch_time_start = t if self.args.time: mean_epoch_time = (t - self.train_time_start) / (epoch - self.start_epoch + 1) self.epochs = self.args.epochs = math.ceil(self.args.time * 3600 / mean_epoch_time) self._setup_scheduler() self.scheduler.last_epoch = self.epoch # do not move self.stop |= epoch >= self.epochs # stop if exceeded epochs self.run_callbacks("on_fit_epoch_end") gc.collect() torch.cuda.empty_cache() # clear GPU memory at end of epoch, may help reduce CUDA out of memory errors # Early Stopping if RANK != -1: # if DDP training broadcast_list = [self.stop if RANK == 0 else None] dist.broadcast_object_list(broadcast_list, 0) # broadcast 'stop' to all ranks self.stop = broadcast_list[0] if self.stop: break # must break all DDP ranks epoch += 1 if RANK in {-1, 0}: # Do final val with best.pt LOGGER.info( f"\n{epoch - self.start_epoch + 1} epochs completed in " f"{(time.time() - self.train_time_start) / 3600:.3f} hours." ) self.final_eval() if self.args.plots: self.plot_metrics() self.run_callbacks("on_train_end") gc.collect() torch.cuda.empty_cache() self.run_callbacks("teardown") def save_model(self): """Save model training checkpoints with additional metadata.""" import io import pandas as pd # scope for faster 'import ultralytics' # Serialize ckpt to a byte buffer once (faster than repeated torch.save() calls) buffer = io.BytesIO() torch.save( { "epoch": self.epoch, "best_fitness": self.best_fitness, "model": None, # resume and final checkpoints derive from EMA "ema": deepcopy(self.ema.ema).half(), "updates": self.ema.updates, "optimizer": convert_optimizer_state_dict_to_fp16(deepcopy(self.optimizer.state_dict())), "train_args": vars(self.args), # save as dict "train_metrics": {**self.metrics, **{"fitness": self.fitness}}, "train_results": {k.strip(): v for k, v in pd.read_csv(self.csv).to_dict(orient="list").items()}, "date": datetime.now().isoformat(), "version": __version__, "license": "AGPL-3.0 (https://ultralytics.com/license)", "docs": "https://docs.ultralytics.com", }, buffer, ) serialized_ckpt = buffer.getvalue() # get the serialized content to save # Save checkpoints self.last.write_bytes(serialized_ckpt) # save last.pt if self.best_fitness == self.fitness: self.best.write_bytes(serialized_ckpt) # save best.pt if (self.save_period > 0) and (self.epoch > 0) and (self.epoch % self.save_period == 0): (self.wdir / f"epoch{self.epoch}.pt").write_bytes(serialized_ckpt) # save epoch, i.e. 'epoch3.pt' def get_dataset(self): """ Get train, val path from data dict if it exists. Returns None if data format is not recognized. """ try: if self.args.task == "classify": data = check_cls_dataset(self.args.data) elif self.args.data.split(".")[-1] in {"yaml", "yml"} or self.args.task in { "detect", "segment", "pose", "obb", }: data = check_det_dataset(self.args.data) if "yaml_file" in data: self.args.data = data["yaml_file"] # for validating 'yolo train data=url.zip' usage except Exception as e: raise RuntimeError(emojis(f"Dataset '{clean_url(self.args.data)}' error ❌ {e}")) from e self.data = data return data["train"], data.get("val") or data.get("test") def setup_model(self): """Load/create/download model for any task.""" if isinstance(self.model, torch.nn.Module): # if model is loaded beforehand. No setup needed return cfg, weights = self.model, None ckpt = None if str(self.model).endswith(".pt"): weights, ckpt = attempt_load_one_weight(self.model) cfg = weights.yaml elif isinstance(self.args.pretrained, (str, Path)): weights, _ = attempt_load_one_weight(self.args.pretrained) self.model = self.get_model(cfg=cfg, weights=weights, verbose=RANK == -1) # calls Model(cfg, weights) return ckpt def optimizer_step(self): """Perform a single step of the training optimizer with gradient clipping and EMA update.""" self.scaler.unscale_(self.optimizer) # unscale gradients torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=10.0) # clip gradients self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if self.ema: self.ema.update(self.model) def preprocess_batch(self, batch): """Allows custom preprocessing model inputs and ground truths depending on task type.""" return batch def validate(self): """ Runs validation on test set using self.validator. The returned dict is expected to contain "fitness" key. """ metrics = self.validator(self) fitness = metrics.pop("fitness", -self.loss.detach().cpu().numpy()) # use loss as fitness measure if not found if not self.best_fitness or self.best_fitness < fitness: self.best_fitness = fitness return metrics, fitness def get_model(self, cfg=None, weights=None, verbose=True): """Get model and raise NotImplementedError for loading cfg files.""" raise NotImplementedError("This task trainer doesn't support loading cfg files") def get_validator(self): """Returns a NotImplementedError when the get_validator function is called.""" raise NotImplementedError("get_validator function not implemented in trainer") def get_dataloader(self, dataset_path, batch_size=16, rank=0, mode="train"): """Returns dataloader derived from torch.data.Dataloader.""" raise NotImplementedError("get_dataloader function not implemented in trainer") def build_dataset(self, img_path, mode="train", batch=None): """Build dataset.""" raise NotImplementedError("build_dataset function not implemented in trainer") def label_loss_items(self, loss_items=None, prefix="train"): """ Returns a loss dict with labelled training loss items tensor. Note: This is not needed for classification but necessary for segmentation & detection """ return {"loss": loss_items} if loss_items is not None else ["loss"] def set_model_attributes(self): """To set or update model parameters before training.""" self.model.names = self.data["names"] def build_targets(self, preds, targets): """Builds target tensors for training YOLO model.""" pass def progress_string(self): """Returns a string describing training progress.""" return "" # TODO: may need to put these following functions into callback def plot_training_samples(self, batch, ni): """Plots training samples during YOLO training.""" pass def plot_training_labels(self): """Plots training labels for YOLO model.""" pass def save_metrics(self, metrics): """Saves training metrics to a CSV file.""" keys, vals = list(metrics.keys()), list(metrics.values()) n = len(metrics) + 1 # number of cols s = "" if self.csv.exists() else (("%23s," * n % tuple(["epoch"] + keys)).rstrip(",") + "\n") # header with open(self.csv, "a") as f: f.write(s + ("%23.5g," * n % tuple([self.epoch + 1] + vals)).rstrip(",") + "\n") def plot_metrics(self): """Plot and display metrics visually.""" pass def on_plot(self, name, data=None): """Registers plots (e.g. to be consumed in callbacks)""" path = Path(name) self.plots[path] = {"data": data, "timestamp": time.time()} def final_eval(self): """Performs final evaluation and validation for object detection YOLO model.""" for f in self.last, self.best: if f.exists(): strip_optimizer(f) # strip optimizers if f is self.best: LOGGER.info(f"\nValidating {f}...") self.validator.args.plots = self.args.plots self.metrics = self.validator(model=f) self.metrics.pop("fitness", None) self.run_callbacks("on_fit_epoch_end") def check_resume(self, overrides): """Check if resume checkpoint exists and update arguments accordingly.""" resume = self.args.resume if resume: try: exists = isinstance(resume, (str, Path)) and Path(resume).exists() last = Path(check_file(resume) if exists else get_latest_run()) # Check that resume data YAML exists, otherwise strip to force re-download of dataset ckpt_args = attempt_load_weights(last).args if not Path(ckpt_args["data"]).exists(): ckpt_args["data"] = self.args.data resume = True self.args = get_cfg(ckpt_args) self.args.model = self.args.resume = str(last) # reinstate model for k in "imgsz", "batch", "device": # allow arg updates to reduce memory or update device on resume if k in overrides: setattr(self.args, k, overrides[k]) except Exception as e: raise FileNotFoundError( "Resume checkpoint not found. Please pass a valid checkpoint to resume from, " "i.e. 'yolo train resume model=path/to/last.pt'" ) from e self.resume = resume def resume_training(self, ckpt): """Resume YOLO training from given epoch and best fitness.""" if ckpt is None or not self.resume: return best_fitness = 0.0 start_epoch = ckpt.get("epoch", -1) + 1 if ckpt.get("optimizer", None) is not None: self.optimizer.load_state_dict(ckpt["optimizer"]) # optimizer best_fitness = ckpt["best_fitness"] if self.ema and ckpt.get("ema"): self.ema.ema.load_state_dict(ckpt["ema"].float().state_dict()) # EMA self.ema.updates = ckpt["updates"] assert start_epoch > 0, ( f"{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n" f"Start a new training without resuming, i.e. 'yolo train model={self.args.model}'" ) LOGGER.info(f"Resuming training {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs") if self.epochs < start_epoch: LOGGER.info( f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs." ) self.epochs += ckpt["epoch"] # finetune additional epochs self.best_fitness = best_fitness self.start_epoch = start_epoch if start_epoch > (self.epochs - self.args.close_mosaic): self._close_dataloader_mosaic() def _close_dataloader_mosaic(self): """Update dataloaders to stop using mosaic augmentation.""" if hasattr(self.train_loader.dataset, "mosaic"): self.train_loader.dataset.mosaic = False if hasattr(self.train_loader.dataset, "close_mosaic"): LOGGER.info("Closing dataloader mosaic") self.train_loader.dataset.close_mosaic(hyp=self.args) def build_optimizer(self, model, name="auto", lr=0.001, momentum=0.9, decay=1e-5, iterations=1e5): """ Constructs an optimizer for the given model, based on the specified optimizer name, learning rate, momentum, weight decay, and number of iterations. Args: model (torch.nn.Module): The model for which to build an optimizer. name (str, optional): The name of the optimizer to use. If 'auto', the optimizer is selected based on the number of iterations. Default: 'auto'. lr (float, optional): The learning rate for the optimizer. Default: 0.001. momentum (float, optional): The momentum factor for the optimizer. Default: 0.9. decay (float, optional): The weight decay for the optimizer. Default: 1e-5. iterations (float, optional): The number of iterations, which determines the optimizer if name is 'auto'. Default: 1e5. Returns: (torch.optim.Optimizer): The constructed optimizer. """ g = [], [], [] # optimizer parameter groups bn = tuple(v for k, v in nn.__dict__.items() if "Norm" in k) # normalization layers, i.e. BatchNorm2d() if name == "auto": LOGGER.info( f"{colorstr('optimizer:')} 'optimizer=auto' found, " f"ignoring 'lr0={self.args.lr0}' and 'momentum={self.args.momentum}' and " f"determining best 'optimizer', 'lr0' and 'momentum' automatically... " ) nc = getattr(model, "nc", 10) # number of classes lr_fit = round(0.002 * 5 / (4 + nc), 6) # lr0 fit equation to 6 decimal places name, lr, momentum = ("SGD", 0.01, 0.9) if iterations > 10000 else ("AdamW", lr_fit, 0.9) self.args.warmup_bias_lr = 0.0 # no higher than 0.01 for Adam for module_name, module in model.named_modules(): for param_name, param in module.named_parameters(recurse=False): fullname = f"{module_name}.{param_name}" if module_name else param_name if "bias" in fullname: # bias (no decay) g[2].append(param) elif isinstance(module, bn): # weight (no decay) g[1].append(param) else: # weight (with decay) g[0].append(param) if name in {"Adam", "Adamax", "AdamW", "NAdam", "RAdam"}: optimizer = getattr(optim, name, optim.Adam)(g[2], lr=lr, betas=(momentum, 0.999), weight_decay=0.0) elif name == "RMSProp": optimizer = optim.RMSprop(g[2], lr=lr, momentum=momentum) elif name == "SGD": optimizer = optim.SGD(g[2], lr=lr, momentum=momentum, nesterov=True) else: raise NotImplementedError( f"Optimizer '{name}' not found in list of available optimizers " f"[Adam, AdamW, NAdam, RAdam, RMSProp, SGD, auto]." "To request support for addition optimizers please visit https://github.com/ultralytics/ultralytics." ) optimizer.add_param_group({"params": g[0], "weight_decay": decay}) # add g0 with weight_decay optimizer.add_param_group({"params": g[1], "weight_decay": 0.0}) # add g1 (BatchNorm2d weights) LOGGER.info( f"{colorstr('optimizer:')} {type(optimizer).__name__}(lr={lr}, momentum={momentum}) with parameter groups " f'{len(g[1])} weight(decay=0.0), {len(g[0])} weight(decay={decay}), {len(g[2])} bias(decay=0.0)' ) return optimizer