# Ultralytics YOLO 🚀, AGPL-3.0 license import cv2 from ultralytics.utils.checks import check_imshow from ultralytics.utils.plotting import Annotator class AIGym: """A class to manage the gym steps of people in a real-time video stream based on their poses.""" def __init__( self, kpts_to_check, line_thickness=2, view_img=False, pose_up_angle=145.0, pose_down_angle=90.0, pose_type="pullup", ): """ Initializes the AIGym class with the specified parameters. Args: kpts_to_check (list): Indices of keypoints to check. line_thickness (int, optional): Thickness of the lines drawn. Defaults to 2. view_img (bool, optional): Flag to display the image. Defaults to False. pose_up_angle (float, optional): Angle threshold for the 'up' pose. Defaults to 145.0. pose_down_angle (float, optional): Angle threshold for the 'down' pose. Defaults to 90.0. pose_type (str, optional): Type of pose to detect ('pullup', 'pushup', 'abworkout'). Defaults to "pullup". """ # Image and line thickness self.im0 = None self.tf = line_thickness # Keypoints and count information self.keypoints = None self.poseup_angle = pose_up_angle self.posedown_angle = pose_down_angle self.threshold = 0.001 # Store stage, count and angle information self.angle = None self.count = None self.stage = None self.pose_type = pose_type self.kpts_to_check = kpts_to_check # Visual Information self.view_img = view_img self.annotator = None # Check if environment supports imshow self.env_check = check_imshow(warn=True) self.count = [] self.angle = [] self.stage = [] def start_counting(self, im0, results): """ Function used to count the gym steps. Args: im0 (ndarray): Current frame from the video stream. results (list): Pose estimation data. """ self.im0 = im0 if not len(results[0]): return self.im0 if len(results[0]) > len(self.count): new_human = len(results[0]) - len(self.count) self.count += [0] * new_human self.angle += [0] * new_human self.stage += ["-"] * new_human self.keypoints = results[0].keypoints.data self.annotator = Annotator(im0, line_width=self.tf) for ind, k in enumerate(reversed(self.keypoints)): # Estimate angle and draw specific points based on pose type if self.pose_type in {"pushup", "pullup", "abworkout", "squat"}: self.angle[ind] = self.annotator.estimate_pose_angle( k[int(self.kpts_to_check[0])].cpu(), k[int(self.kpts_to_check[1])].cpu(), k[int(self.kpts_to_check[2])].cpu(), ) self.im0 = self.annotator.draw_specific_points(k, self.kpts_to_check, shape=(640, 640), radius=10) # Check and update pose stages and counts based on angle if self.pose_type in {"abworkout", "pullup"}: if self.angle[ind] > self.poseup_angle: self.stage[ind] = "down" if self.angle[ind] < self.posedown_angle and self.stage[ind] == "down": self.stage[ind] = "up" self.count[ind] += 1 elif self.pose_type in {"pushup", "squat"}: if self.angle[ind] > self.poseup_angle: self.stage[ind] = "up" if self.angle[ind] < self.posedown_angle and self.stage[ind] == "up": self.stage[ind] = "down" self.count[ind] += 1 self.annotator.plot_angle_and_count_and_stage( angle_text=self.angle[ind], count_text=self.count[ind], stage_text=self.stage[ind], center_kpt=k[int(self.kpts_to_check[1])], ) # Draw keypoints self.annotator.kpts(k, shape=(640, 640), radius=1, kpt_line=True) # Display the image if environment supports it and view_img is True if self.env_check and self.view_img: cv2.imshow("Ultralytics YOLOv8 AI GYM", self.im0) if cv2.waitKey(1) & 0xFF == ord("q"): return return self.im0 if __name__ == "__main__": kpts_to_check = [0, 1, 2] # example keypoints aigym = AIGym(kpts_to_check)