# Ultralytics YOLO 🚀, AGPL-3.0 license import warnings from itertools import cycle import cv2 import matplotlib.pyplot as plt import numpy as np from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from matplotlib.figure import Figure class Analytics: """A class to create and update various types of charts (line, bar, pie, area) for visual analytics.""" def __init__( self, type, writer, im0_shape, title="ultralytics", x_label="x", y_label="y", bg_color="white", fg_color="black", line_color="yellow", line_width=2, points_width=10, fontsize=13, view_img=False, save_img=True, max_points=50, ): """ Initialize the Analytics class with various chart types. Args: type (str): Type of chart to initialize ('line', 'bar', 'pie', or 'area'). writer (object): Video writer object to save the frames. im0_shape (tuple): Shape of the input image (width, height). title (str): Title of the chart. x_label (str): Label for the x-axis. y_label (str): Label for the y-axis. bg_color (str): Background color of the chart. fg_color (str): Foreground (text) color of the chart. line_color (str): Line color for line charts. line_width (int): Width of the lines in line charts. points_width (int): Width of line points highlighter fontsize (int): Font size for chart text. view_img (bool): Whether to display the image. save_img (bool): Whether to save the image. max_points (int): Specifies when to remove the oldest points in a graph for multiple lines. """ self.bg_color = bg_color self.fg_color = fg_color self.view_img = view_img self.save_img = save_img self.title = title self.writer = writer self.max_points = max_points self.line_color = line_color self.x_label = x_label self.y_label = y_label self.points_width = points_width self.line_width = line_width self.fontsize = fontsize # Set figure size based on image shape figsize = (im0_shape[0] / 100, im0_shape[1] / 100) if type in {"line", "area"}: # Initialize line or area plot self.lines = {} self.fig = Figure(facecolor=self.bg_color, figsize=figsize) self.canvas = FigureCanvas(self.fig) self.ax = self.fig.add_subplot(111, facecolor=self.bg_color) if type == "line": (self.line,) = self.ax.plot([], [], color=self.line_color, linewidth=self.line_width) elif type in {"bar", "pie"}: # Initialize bar or pie plot self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color) self.ax.set_facecolor(self.bg_color) color_palette = [ (31, 119, 180), (255, 127, 14), (44, 160, 44), (214, 39, 40), (148, 103, 189), (140, 86, 75), (227, 119, 194), (127, 127, 127), (188, 189, 34), (23, 190, 207), ] self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette] self.color_cycle = cycle(self.color_palette) self.color_mapping = {} # Ensure pie chart is circular self.ax.axis("equal") if type == "pie" else None # Set common axis properties self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=self.fontsize - 3) self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=self.fontsize - 3) self.ax.tick_params(axis="both", colors=self.fg_color) def update_area(self, frame_number, counts_dict): """ Update the area graph with new data for multiple classes. Args: frame_number (int): The current frame number. counts_dict (dict): Dictionary with class names as keys and counts as values. """ x_data = np.array([]) y_data_dict = {key: np.array([]) for key in counts_dict.keys()} if self.ax.lines: x_data = self.ax.lines[0].get_xdata() for line, key in zip(self.ax.lines, counts_dict.keys()): y_data_dict[key] = line.get_ydata() x_data = np.append(x_data, float(frame_number)) max_length = len(x_data) for key in counts_dict.keys(): y_data_dict[key] = np.append(y_data_dict[key], float(counts_dict[key])) if len(y_data_dict[key]) < max_length: y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant") # Remove the oldest points if the number of points exceeds max_points if len(x_data) > self.max_points: x_data = x_data[1:] for key in counts_dict.keys(): y_data_dict[key] = y_data_dict[key][1:] self.ax.clear() colors = ["#E1FF25", "#0BDBEB", "#FF64DA", "#111F68", "#042AFF"] color_cycle = cycle(colors) for key, y_data in y_data_dict.items(): color = next(color_cycle) self.ax.fill_between(x_data, y_data, color=color, alpha=0.6) self.ax.plot( x_data, y_data, color=color, linewidth=self.line_width, marker="o", markersize=self.points_width, label=f"{key} Data Points", ) self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize) self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3) self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3) legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.fg_color) # Set legend text color for text in legend.get_texts(): text.set_color(self.fg_color) self.canvas.draw() im0 = np.array(self.canvas.renderer.buffer_rgba()) self.write_and_display(im0) def update_line(self, frame_number, total_counts): """ Update the line graph with new data. Args: frame_number (int): The current frame number. total_counts (int): The total counts to plot. """ # Update line graph data x_data = self.line.get_xdata() y_data = self.line.get_ydata() x_data = np.append(x_data, float(frame_number)) y_data = np.append(y_data, float(total_counts)) self.line.set_data(x_data, y_data) self.ax.relim() self.ax.autoscale_view() self.canvas.draw() im0 = np.array(self.canvas.renderer.buffer_rgba()) self.write_and_display(im0) def update_multiple_lines(self, counts_dict, labels_list, frame_number): """ Update the line graph with multiple classes. Args: counts_dict (int): Dictionary include each class counts. labels_list (int): list include each classes names. frame_number (int): The current frame number. """ warnings.warn("Display is not supported for multiple lines, output will be stored normally!") for obj in labels_list: if obj not in self.lines: (line,) = self.ax.plot([], [], label=obj, marker="o", markersize=self.points_width) self.lines[obj] = line x_data = self.lines[obj].get_xdata() y_data = self.lines[obj].get_ydata() # Remove the initial point if the number of points exceeds max_points if len(x_data) >= self.max_points: x_data = np.delete(x_data, 0) y_data = np.delete(y_data, 0) x_data = np.append(x_data, float(frame_number)) # Ensure frame_number is converted to float y_data = np.append(y_data, float(counts_dict.get(obj, 0))) # Ensure total_count is converted to float self.lines[obj].set_data(x_data, y_data) self.ax.relim() self.ax.autoscale_view() self.ax.legend() self.canvas.draw() im0 = np.array(self.canvas.renderer.buffer_rgba()) self.view_img = False # for multiple line view_img not supported yet, coming soon! self.write_and_display(im0) def write_and_display(self, im0): """ Write and display the line graph Args: im0 (ndarray): Image for processing """ im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR) cv2.imshow(self.title, im0) if self.view_img else None self.writer.write(im0) if self.save_img else None def update_bar(self, count_dict): """ Update the bar graph with new data. Args: count_dict (dict): Dictionary containing the count data to plot. """ # Update bar graph data self.ax.clear() self.ax.set_facecolor(self.bg_color) labels = list(count_dict.keys()) counts = list(count_dict.values()) # Map labels to colors for label in labels: if label not in self.color_mapping: self.color_mapping[label] = next(self.color_cycle) colors = [self.color_mapping[label] for label in labels] bars = self.ax.bar(labels, counts, color=colors) for bar, count in zip(bars, counts): self.ax.text( bar.get_x() + bar.get_width() / 2, bar.get_height(), str(count), ha="center", va="bottom", color=self.fg_color, ) # Display and save the updated graph canvas = FigureCanvas(self.fig) canvas.draw() buf = canvas.buffer_rgba() im0 = np.asarray(buf) self.write_and_display(im0) def update_pie(self, classes_dict): """ Update the pie chart with new data. Args: classes_dict (dict): Dictionary containing the class data to plot. """ # Update pie chart data labels = list(classes_dict.keys()) sizes = list(classes_dict.values()) total = sum(sizes) percentages = [size / total * 100 for size in sizes] start_angle = 90 self.ax.clear() # Create pie chart without labels inside the slices wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color}) # Construct legend labels with percentages legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)] self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) # Adjust layout to fit the legend self.fig.tight_layout() self.fig.subplots_adjust(left=0.1, right=0.75) # Display and save the updated chart im0 = self.fig.canvas.draw() im0 = np.array(self.fig.canvas.renderer.buffer_rgba()) self.write_and_display(im0) if __name__ == "__main__": Analytics("line", writer=None, im0_shape=None)