169 lines
6.6 KiB
Python
169 lines
6.6 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from collections import defaultdict
|
|
|
|
import cv2
|
|
|
|
from ultralytics.utils.checks import check_imshow, check_requirements
|
|
from ultralytics.utils.plotting import Annotator, colors
|
|
|
|
check_requirements("shapely>=2.0.0")
|
|
|
|
from shapely.geometry import Point, Polygon
|
|
|
|
|
|
class QueueManager:
|
|
"""A class to manage the queue in a real-time video stream based on object tracks."""
|
|
|
|
def __init__(
|
|
self,
|
|
names,
|
|
reg_pts=None,
|
|
line_thickness=2,
|
|
track_thickness=2,
|
|
view_img=False,
|
|
region_color=(255, 0, 255),
|
|
view_queue_counts=True,
|
|
draw_tracks=False,
|
|
count_txt_color=(255, 255, 255),
|
|
track_color=None,
|
|
region_thickness=5,
|
|
fontsize=0.7,
|
|
):
|
|
"""
|
|
Initializes the QueueManager with specified parameters for tracking and counting objects.
|
|
|
|
Args:
|
|
names (dict): A dictionary mapping class IDs to class names.
|
|
reg_pts (list of tuples, optional): Points defining the counting region polygon. Defaults to a predefined
|
|
rectangle.
|
|
line_thickness (int, optional): Thickness of the annotation lines. Defaults to 2.
|
|
track_thickness (int, optional): Thickness of the track lines. Defaults to 2.
|
|
view_img (bool, optional): Whether to display the image frames. Defaults to False.
|
|
region_color (tuple, optional): Color of the counting region lines (BGR). Defaults to (255, 0, 255).
|
|
view_queue_counts (bool, optional): Whether to display the queue counts. Defaults to True.
|
|
draw_tracks (bool, optional): Whether to draw tracks of the objects. Defaults to False.
|
|
count_txt_color (tuple, optional): Color of the count text (BGR). Defaults to (255, 255, 255).
|
|
track_color (tuple, optional): Color of the tracks. If None, different colors will be used for different
|
|
tracks. Defaults to None.
|
|
region_thickness (int, optional): Thickness of the counting region lines. Defaults to 5.
|
|
fontsize (float, optional): Font size for the text annotations. Defaults to 0.7.
|
|
"""
|
|
|
|
# Mouse events state
|
|
self.is_drawing = False
|
|
self.selected_point = None
|
|
|
|
# Region & Line Information
|
|
self.reg_pts = reg_pts if reg_pts is not None else [(20, 60), (20, 680), (1120, 680), (1120, 60)]
|
|
self.counting_region = (
|
|
Polygon(self.reg_pts) if len(self.reg_pts) >= 3 else Polygon([(20, 60), (20, 680), (1120, 680), (1120, 60)])
|
|
)
|
|
self.region_color = region_color
|
|
self.region_thickness = region_thickness
|
|
|
|
# Image and annotation Information
|
|
self.im0 = None
|
|
self.tf = line_thickness
|
|
self.view_img = view_img
|
|
self.view_queue_counts = view_queue_counts
|
|
self.fontsize = fontsize
|
|
|
|
self.names = names # Class names
|
|
self.annotator = None # Annotator
|
|
self.window_name = "Ultralytics YOLOv8 Queue Manager"
|
|
|
|
# Object counting Information
|
|
self.counts = 0
|
|
self.count_txt_color = count_txt_color
|
|
|
|
# Tracks info
|
|
self.track_history = defaultdict(list)
|
|
self.track_thickness = track_thickness
|
|
self.draw_tracks = draw_tracks
|
|
self.track_color = track_color
|
|
|
|
# Check if environment supports imshow
|
|
self.env_check = check_imshow(warn=True)
|
|
|
|
def extract_and_process_tracks(self, tracks):
|
|
"""Extracts and processes tracks for queue management in a video stream."""
|
|
|
|
# Initialize annotator and draw the queue region
|
|
self.annotator = Annotator(self.im0, self.tf, self.names)
|
|
|
|
if tracks[0].boxes.id is not None:
|
|
boxes = tracks[0].boxes.xyxy.cpu()
|
|
clss = tracks[0].boxes.cls.cpu().tolist()
|
|
track_ids = tracks[0].boxes.id.int().cpu().tolist()
|
|
|
|
# Extract tracks
|
|
for box, track_id, cls in zip(boxes, track_ids, clss):
|
|
# Draw bounding box
|
|
self.annotator.box_label(box, label=f"{self.names[cls]}#{track_id}", color=colors(int(track_id), True))
|
|
|
|
# Update track history
|
|
track_line = self.track_history[track_id]
|
|
track_line.append((float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)))
|
|
if len(track_line) > 30:
|
|
track_line.pop(0)
|
|
|
|
# Draw track trails if enabled
|
|
if self.draw_tracks:
|
|
self.annotator.draw_centroid_and_tracks(
|
|
track_line,
|
|
color=self.track_color or colors(int(track_id), True),
|
|
track_thickness=self.track_thickness,
|
|
)
|
|
|
|
prev_position = self.track_history[track_id][-2] if len(self.track_history[track_id]) > 1 else None
|
|
|
|
# Check if the object is inside the counting region
|
|
if len(self.reg_pts) >= 3:
|
|
is_inside = self.counting_region.contains(Point(track_line[-1]))
|
|
if prev_position is not None and is_inside:
|
|
self.counts += 1
|
|
|
|
# Display queue counts
|
|
label = f"Queue Counts : {str(self.counts)}"
|
|
if label is not None:
|
|
self.annotator.queue_counts_display(
|
|
label,
|
|
points=self.reg_pts,
|
|
region_color=self.region_color,
|
|
txt_color=self.count_txt_color,
|
|
)
|
|
|
|
self.counts = 0 # Reset counts after displaying
|
|
self.display_frames()
|
|
|
|
def display_frames(self):
|
|
"""Displays the current frame with annotations."""
|
|
if self.env_check and self.view_img:
|
|
self.annotator.draw_region(reg_pts=self.reg_pts, thickness=self.region_thickness, color=self.region_color)
|
|
cv2.namedWindow(self.window_name)
|
|
cv2.imshow(self.window_name, self.im0)
|
|
# Close window on 'q' key press
|
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
return
|
|
|
|
def process_queue(self, im0, tracks):
|
|
"""
|
|
Main function to start the queue management process.
|
|
|
|
Args:
|
|
im0 (ndarray): Current frame from the video stream.
|
|
tracks (list): List of tracks obtained from the object tracking process.
|
|
"""
|
|
self.im0 = im0 # Store the current frame
|
|
self.extract_and_process_tracks(tracks) # Extract and process tracks
|
|
|
|
if self.view_img:
|
|
self.display_frames() # Display the frame if enabled
|
|
return self.im0
|
|
|
|
|
|
if __name__ == "__main__":
|
|
classes_names = {0: "person", 1: "car"} # example class names
|
|
queue_manager = QueueManager(classes_names)
|