pose-detect/pose.py

234 lines
8.4 KiB
Python
Raw Permalink Normal View History

2024-08-14 16:10:21 +08:00
from ultralytics import YOLO
import cv2
import math
import matplotlib.pyplot as plt
def getAnglebyline(line1, line2):
dx1 = line1[0][0] - line1[1][0]
dy1 = line1[0][1] - line1[1][1]
dx2 = line2[0][0] - line2[1][0]
dy2 = line2[0][1] - line2[1][1]
# 求斜率
m1 = dy1 / dx1
m2 = dy2 / dx2
insideAngle = math.atan(abs((m2 - m1) / (1 + (m1 * m2))))
angle = insideAngle / math.pi * 180
if angle > -370 and angle < 370:
angle = int(angle)
return angle
def aspectRatio(boxes):
boxes = boxes.cpu().numpy().astype('uint32')
x = [boxes[0], boxes[2]]
y = [boxes[1], boxes[3]]
width = x[1] - x[0]
height = y[1] - y[0]
radio = width / height
return radio
def getAnglebypoint(point_a, point_b, point_c):
a_x, b_x, c_x = point_a[0], point_b[0], point_c[0] # 点a、b、c的x坐标
a_y, b_y, c_y = point_a[1], point_b[1], point_c[1] # 点a、b、c的y坐标
if len(point_a) == len(point_b) == len(point_c) == 3:
# print("坐标点为3维坐标形式")
a_z, b_z, c_z = point_a[2], point_b[2], point_c[2] # 点a、b、c的z坐标
else:
a_z, b_z, c_z = 0, 0, 0 # 坐标点为2维坐标形式z 坐标默认值设为0
# print("坐标点为2维坐标形式z 坐标默认值设为0")
# 向量 m=(x1,y1,z1), n=(x2,y2,z2)
x1, y1, z1 = (a_x - b_x), (a_y - b_y), (a_z - b_z)
x2, y2, z2 = (c_x - b_x), (c_y - b_y), (c_z - b_z)
# 两个向量的夹角即角点b的夹角余弦值
cos_b = (x1 * x2 + y1 * y2 + z1 * z2) / (
math.sqrt(x1 ** 2 + y1 ** 2 + z1 ** 2) * (math.sqrt(x2 ** 2 + y2 ** 2 + z2 ** 2)) + 0.01) # 角点b的夹角余弦值
B = math.degrees(math.acos(cos_b)) # 角点b的夹角值
return B
# getAnglebypoint((3 ** 0.5, 1), (0, 0), (3 ** 0.5, 0)) # 结果为 30°
# getAnglebypoint((1, 1), (0, 0), (1, 0)) # 结果为 45°
# getAnglebypoint((-1, 1), (0, 0), (1, 0)) # 结果为 135°
def is_fallen(keypoints, boxes):
keypoints = keypoints.cpu().numpy().astype('uint32')
Left_Shoulder = keypoints[5][:2]
Right_Shoulder = keypoints[6][:2]
Left_Hip = keypoints[11][:2]
Right_Hip = keypoints[12][:2]
Left_Knee = keypoints[13][:2]
Right_Knee = keypoints[15][:2]
Left_Ankle = keypoints[15][:2]
Right_Ankle = keypoints[16][:2]
Shoulders_c = [(Left_Shoulder[0] + Right_Shoulder[0]) // 2,
(Left_Shoulder[1] + Right_Shoulder[1]) // 2]
hips_c = [(Left_Hip[0] + Right_Hip[0]) // 2,
(Left_Hip[1] + Right_Hip[1]) // 2]
Knee_c = [(Left_Knee[0] + Right_Knee[0]) // 2,
(Left_Knee[1] + Right_Knee[1]) // 2]
Ankle_c = [(Left_Ankle[0] + Right_Ankle[0]) // 2,
(Left_Ankle[1] + Right_Ankle[1]) // 2]
'''计算身体中心线与水平线夹角'''
human_angle = getAnglebyline([Shoulders_c, hips_c], [[0, 0], [10, 0]])
'''计算检测区域宽高比'''
aspect_ratio = aspectRatio(boxes)
'''计算肩部中心点与胯部中心点的垂直距离差'''
human_shoulderhip = abs(Shoulders_c[1] - hips_c[1])
'''计算肩部胯部膝盖夹角'''
Hip_Knee_Shoulders_angle = getAnglebypoint(Shoulders_c, hips_c, Knee_c)
Hip_Knee_Right_angle = getAnglebypoint(Right_Shoulder.tolist(), Right_Hip.tolist(), Right_Knee.tolist())
'''计算胯部膝盖小腿夹角'''
Ankle_Knee_Hip_angle = getAnglebypoint(hips_c, Knee_c, Ankle_c)
Ankle_Knee_Right_angle = getAnglebypoint(Right_Hip.tolist(), Right_Knee.tolist(), Right_Ankle.tolist())
'''计算胯部膝盖是否处于相似的垂直位置'''
vertical_threshold = Left_Knee[1] - Left_Shoulder[1]
'''计算胯部膝盖是否处于相似的水平位置'''
horizontal_threshold = Left_Shoulder[0] - Left_Knee[0]
status_score = {'Stand': 0.0,
'Fall': 0.0,
'Sit': 0.0,
'other': 0.0}
_weight = ''
'''判断Shoulder、Hip、Knee是否被检测到'''
if Knee_c[0] == 0 and Knee_c[1] == 0 and hips_c[0] == 0 and hips_c[1] == 0:
status_score['Sit'] += 0.69
status_score['Fall'] += -0.8 * 2
status_score['Stand'] += -0.8 * 2
_weight = f'[1]Sit:+0.2, Fall:-1.6 ,Stand: -1.6'
elif Shoulders_c[1] == 0 and Shoulders_c[0] == 0 and hips_c[0] == 0 and hips_c[1] == 0:
status_score['Sit'] += -0.8 * 2
status_score['Fall'] += -0.8 * 2
status_score['Stand'] += 0.69
'''身体中心线与水平线夹角+-25'''
if human_angle in range(-25, 25):
status_score['Fall'] += 0.8
status_score['Sit'] += 0.1
_weight = f'{_weight}, [2]Fall:+0.8, Sit:+0.1'
else:
status_score['Fall'] += 0.2 * ((90 - human_angle) / 90)
_weight = f'{_weight}, [3]Fall:+{0.8 * ((90 - human_angle) / 90)}'
'''宽高比小与0.6则为站立'''
if (aspect_ratio < 0.6 and human_angle in range(65, 115)):
status_score['Stand'] += 0.8
_weight = f'{_weight}, [4]Stand:+0.8'
elif (aspect_ratio > 1 / 0.6): # 5/3
status_score['Fall'] += 0.8
_weight = f'{_weight}, [5]Fall:+0.8'
if horizontal_threshold < 30:
status_score['Fall'] += 0.6
status_score['Sit'] += -0.15
score_max, status_max = max(zip(status_score.values(), status_score.keys()))
return status_max, score_max
def draw_boxes(boxes, image, label):
boxes = boxes.cpu().numpy().astype('uint32')
x = [boxes[0], boxes[2]]
y = [boxes[1], boxes[3]]
X = x[0]
Y = y[0]
color = (0, 255, 0)
cv2.rectangle(image, (int(x[0]), int(y[0])), (int(x[1]), int(y[1])), color, 2)
cv2.putText(image, label, (int(X + 5), int(Y + 5)), cv2.FONT_HERSHEY_SIMPLEX, 1, color, 2)
if __name__ == '__main__':
model = YOLO('yolov8x-pose.pt')
source = 'images' # 换成自己的图片路径
results = model(source)
y_train = []
for result in results:
keypoints = result.keypoints.xy
boxes = result.boxes.xyxy
image_path = result.path
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# print(keypoints.shape)
# print(image_path.split("images")[0])
# with open(f"{image_path}", "r") as f:
# for line in f.readlines():
# line = line.strip('\n') # 去掉列表中每一个元素的换行符
# y_train.append(line[0])
# print(f"第{i}张图片:")
# y2 = []
for keypoin, box in zip(keypoints, boxes):
# print(keypoin,box)
# keypoint = keypoin.cpu().numpy().astype('uint32')
status_max, score_max = is_fallen(keypoin, box)
if status_max == 'Fall':
draw_boxes(box, image, f'{status_max}')
# y2.append(status_max)
# y1.append(y2)
plt.imshow(image)
plt.show()
# print(y1)
# class BinaryClassifier(nn.Module):
# def __init__(self, input_features):
# super(BinaryClassifier, self).__init__()
# # 定义网络结构
# self.fc1 = nn.Linear(input_features, 64) # 第一个全连接层
# self.fc2 = nn.Linear(64, 32) # 第二个全连接层
# self.fc3 = nn.Linear(32, 2) # 输出层2个神经元代表两个类别
#
# def forward(self, x):
# x = F.relu(self.fc1(x)) # 使用ReLU激活函数
# x = F.relu(self.fc2(x)) # 使用ReLU激活函数
# x = self.fc3(x) # 输出层不需要激活函数因为后面会使用softmax
# return x
#
#
# # 实例化网络模型
# input_features = 17 # 输入特征数量
# model = BinaryClassifier(input_features)
#
# # 定义损失函数和优化器
# criterion = nn.CrossEntropyLoss() # 交叉熵损失函数,适用于多分类问题
# optimizer = optim.Adam(model.parameters(), lr=0.001) # Adam优化器
#
# # 假设有一些训练数据
# # X_train是训练特征y_train是训练标签0或1
# X_train = torch.randn(100, input_features) # 100个样本每个样本17个特征
# y_train = torch.randint(0, 2, (100,)) # 100个样本的标签0或1
#
# # 训练网络
# num_epochs = 10 # 训练轮数
# for epoch in range(num_epochs):
# # 前向传播
# outputs = model(X_train)
# loss = criterion(outputs, y_train)
#
# # 反向传播和优化
# optimizer.zero_grad() # 清空过往梯度
# loss.backward() # 反向传播,计算当前梯度
# optimizer.step() # 根据梯度更新网络参数
#
# print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')