85 lines
3.5 KiB
Python
85 lines
3.5 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import torch
|
||
|
|
||
|
from ultralytics.data.augment import LetterBox
|
||
|
from ultralytics.engine.predictor import BasePredictor
|
||
|
from ultralytics.engine.results import Results
|
||
|
from ultralytics.utils import ops
|
||
|
|
||
|
|
||
|
class RTDETRPredictor(BasePredictor):
|
||
|
"""
|
||
|
RT-DETR (Real-Time Detection Transformer) Predictor extending the BasePredictor class for making predictions using
|
||
|
Baidu's RT-DETR model.
|
||
|
|
||
|
This class leverages the power of Vision Transformers to provide real-time object detection while maintaining
|
||
|
high accuracy. It supports key features like efficient hybrid encoding and IoU-aware query selection.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.utils import ASSETS
|
||
|
from ultralytics.models.rtdetr import RTDETRPredictor
|
||
|
|
||
|
args = dict(model='rtdetr-l.pt', source=ASSETS)
|
||
|
predictor = RTDETRPredictor(overrides=args)
|
||
|
predictor.predict_cli()
|
||
|
```
|
||
|
|
||
|
Attributes:
|
||
|
imgsz (int): Image size for inference (must be square and scale-filled).
|
||
|
args (dict): Argument overrides for the predictor.
|
||
|
"""
|
||
|
|
||
|
def postprocess(self, preds, img, orig_imgs):
|
||
|
"""
|
||
|
Postprocess the raw predictions from the model to generate bounding boxes and confidence scores.
|
||
|
|
||
|
The method filters detections based on confidence and class if specified in `self.args`.
|
||
|
|
||
|
Args:
|
||
|
preds (list): List of [predictions, extra] from the model.
|
||
|
img (torch.Tensor): Processed input images.
|
||
|
orig_imgs (list or torch.Tensor): Original, unprocessed images.
|
||
|
|
||
|
Returns:
|
||
|
(list[Results]): A list of Results objects containing the post-processed bounding boxes, confidence scores,
|
||
|
and class labels.
|
||
|
"""
|
||
|
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
|
||
|
preds = [preds, None]
|
||
|
|
||
|
nd = preds[0].shape[-1]
|
||
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
|
||
|
|
||
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
||
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
||
|
|
||
|
results = []
|
||
|
for bbox, score, orig_img, img_path in zip(bboxes, scores, orig_imgs, self.batch[0]): # (300, 4)
|
||
|
bbox = ops.xywh2xyxy(bbox)
|
||
|
max_score, cls = score.max(-1, keepdim=True) # (300, 1)
|
||
|
idx = max_score.squeeze(-1) > self.args.conf # (300, )
|
||
|
if self.args.classes is not None:
|
||
|
idx = (cls == torch.tensor(self.args.classes, device=cls.device)).any(1) & idx
|
||
|
pred = torch.cat([bbox, max_score, cls], dim=-1)[idx] # filter
|
||
|
oh, ow = orig_img.shape[:2]
|
||
|
pred[..., [0, 2]] *= ow
|
||
|
pred[..., [1, 3]] *= oh
|
||
|
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
|
||
|
return results
|
||
|
|
||
|
def pre_transform(self, im):
|
||
|
"""
|
||
|
Pre-transforms the input images before feeding them into the model for inference. The input images are
|
||
|
letterboxed to ensure a square aspect ratio and scale-filled. The size must be square(640) and scaleFilled.
|
||
|
|
||
|
Args:
|
||
|
im (list[np.ndarray] |torch.Tensor): Input images of shape (N,3,h,w) for tensor, [(h,w,3) x N] for list.
|
||
|
|
||
|
Returns:
|
||
|
(list): List of pre-transformed images ready for model inference.
|
||
|
"""
|
||
|
letterbox = LetterBox(self.imgsz, auto=False, scaleFill=True)
|
||
|
return [letterbox(image=x) for x in im]
|