93 lines
3.6 KiB
Python
93 lines
3.6 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import itertools
|
||
|
|
||
|
from ultralytics.data import build_yolo_dataset
|
||
|
from ultralytics.models import yolo
|
||
|
from ultralytics.nn.tasks import WorldModel
|
||
|
from ultralytics.utils import DEFAULT_CFG, RANK, checks
|
||
|
from ultralytics.utils.torch_utils import de_parallel
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_end(trainer):
|
||
|
"""Callback."""
|
||
|
if RANK in {-1, 0}:
|
||
|
# NOTE: for evaluation
|
||
|
names = [name.split("/")[0] for name in list(trainer.test_loader.dataset.data["names"].values())]
|
||
|
de_parallel(trainer.ema.ema).set_classes(names, cache_clip_model=False)
|
||
|
device = next(trainer.model.parameters()).device
|
||
|
trainer.text_model, _ = trainer.clip.load("ViT-B/32", device=device)
|
||
|
for p in trainer.text_model.parameters():
|
||
|
p.requires_grad_(False)
|
||
|
|
||
|
|
||
|
class WorldTrainer(yolo.detect.DetectionTrainer):
|
||
|
"""
|
||
|
A class to fine-tune a world model on a close-set dataset.
|
||
|
|
||
|
Example:
|
||
|
```python
|
||
|
from ultralytics.models.yolo.world import WorldModel
|
||
|
|
||
|
args = dict(model='yolov8s-world.pt', data='coco8.yaml', epochs=3)
|
||
|
trainer = WorldTrainer(overrides=args)
|
||
|
trainer.train()
|
||
|
```
|
||
|
"""
|
||
|
|
||
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
||
|
"""Initialize a WorldTrainer object with given arguments."""
|
||
|
if overrides is None:
|
||
|
overrides = {}
|
||
|
super().__init__(cfg, overrides, _callbacks)
|
||
|
|
||
|
# Import and assign clip
|
||
|
try:
|
||
|
import clip
|
||
|
except ImportError:
|
||
|
checks.check_requirements("git+https://github.com/ultralytics/CLIP.git")
|
||
|
import clip
|
||
|
self.clip = clip
|
||
|
|
||
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
||
|
"""Return WorldModel initialized with specified config and weights."""
|
||
|
# NOTE: This `nc` here is the max number of different text samples in one image, rather than the actual `nc`.
|
||
|
# NOTE: Following the official config, nc hard-coded to 80 for now.
|
||
|
model = WorldModel(
|
||
|
cfg["yaml_file"] if isinstance(cfg, dict) else cfg,
|
||
|
ch=3,
|
||
|
nc=min(self.data["nc"], 80),
|
||
|
verbose=verbose and RANK == -1,
|
||
|
)
|
||
|
if weights:
|
||
|
model.load(weights)
|
||
|
self.add_callback("on_pretrain_routine_end", on_pretrain_routine_end)
|
||
|
|
||
|
return model
|
||
|
|
||
|
def build_dataset(self, img_path, mode="train", batch=None):
|
||
|
"""
|
||
|
Build YOLO Dataset.
|
||
|
|
||
|
Args:
|
||
|
img_path (str): Path to the folder containing images.
|
||
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
||
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
||
|
"""
|
||
|
gs = max(int(de_parallel(self.model).stride.max() if self.model else 0), 32)
|
||
|
return build_yolo_dataset(
|
||
|
self.args, img_path, batch, self.data, mode=mode, rect=mode == "val", stride=gs, multi_modal=mode == "train"
|
||
|
)
|
||
|
|
||
|
def preprocess_batch(self, batch):
|
||
|
"""Preprocesses a batch of images for YOLOWorld training, adjusting formatting and dimensions as needed."""
|
||
|
batch = super().preprocess_batch(batch)
|
||
|
|
||
|
# NOTE: add text features
|
||
|
texts = list(itertools.chain(*batch["texts"]))
|
||
|
text_token = self.clip.tokenize(texts).to(batch["img"].device)
|
||
|
txt_feats = self.text_model.encode_text(text_token).to(dtype=batch["img"].dtype) # torch.float32
|
||
|
txt_feats = txt_feats / txt_feats.norm(p=2, dim=-1, keepdim=True)
|
||
|
batch["txt_feats"] = txt_feats.reshape(len(batch["texts"]), -1, txt_feats.shape[-1])
|
||
|
return batch
|