665 lines
30 KiB
Python
665 lines
30 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import ast
|
||
|
import contextlib
|
||
|
import json
|
||
|
import platform
|
||
|
import zipfile
|
||
|
from collections import OrderedDict, namedtuple
|
||
|
from pathlib import Path
|
||
|
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from PIL import Image
|
||
|
|
||
|
from ultralytics.utils import ARM64, IS_JETSON, IS_RASPBERRYPI, LINUX, LOGGER, ROOT, yaml_load
|
||
|
from ultralytics.utils.checks import check_requirements, check_suffix, check_version, check_yaml
|
||
|
from ultralytics.utils.downloads import attempt_download_asset, is_url
|
||
|
|
||
|
|
||
|
def check_class_names(names):
|
||
|
"""
|
||
|
Check class names.
|
||
|
|
||
|
Map imagenet class codes to human-readable names if required. Convert lists to dicts.
|
||
|
"""
|
||
|
if isinstance(names, list): # names is a list
|
||
|
names = dict(enumerate(names)) # convert to dict
|
||
|
if isinstance(names, dict):
|
||
|
# Convert 1) string keys to int, i.e. '0' to 0, and non-string values to strings, i.e. True to 'True'
|
||
|
names = {int(k): str(v) for k, v in names.items()}
|
||
|
n = len(names)
|
||
|
if max(names.keys()) >= n:
|
||
|
raise KeyError(
|
||
|
f"{n}-class dataset requires class indices 0-{n - 1}, but you have invalid class indices "
|
||
|
f"{min(names.keys())}-{max(names.keys())} defined in your dataset YAML."
|
||
|
)
|
||
|
if isinstance(names[0], str) and names[0].startswith("n0"): # imagenet class codes, i.e. 'n01440764'
|
||
|
names_map = yaml_load(ROOT / "cfg/datasets/ImageNet.yaml")["map"] # human-readable names
|
||
|
names = {k: names_map[v] for k, v in names.items()}
|
||
|
return names
|
||
|
|
||
|
|
||
|
def default_class_names(data=None):
|
||
|
"""Applies default class names to an input YAML file or returns numerical class names."""
|
||
|
if data:
|
||
|
with contextlib.suppress(Exception):
|
||
|
return yaml_load(check_yaml(data))["names"]
|
||
|
return {i: f"class{i}" for i in range(999)} # return default if above errors
|
||
|
|
||
|
|
||
|
class AutoBackend(nn.Module):
|
||
|
"""
|
||
|
Handles dynamic backend selection for running inference using Ultralytics YOLO models.
|
||
|
|
||
|
The AutoBackend class is designed to provide an abstraction layer for various inference engines. It supports a wide
|
||
|
range of formats, each with specific naming conventions as outlined below:
|
||
|
|
||
|
Supported Formats and Naming Conventions:
|
||
|
| Format | File Suffix |
|
||
|
|-----------------------|------------------|
|
||
|
| PyTorch | *.pt |
|
||
|
| TorchScript | *.torchscript |
|
||
|
| ONNX Runtime | *.onnx |
|
||
|
| ONNX OpenCV DNN | *.onnx (dnn=True)|
|
||
|
| OpenVINO | *openvino_model/ |
|
||
|
| CoreML | *.mlpackage |
|
||
|
| TensorRT | *.engine |
|
||
|
| TensorFlow SavedModel | *_saved_model |
|
||
|
| TensorFlow GraphDef | *.pb |
|
||
|
| TensorFlow Lite | *.tflite |
|
||
|
| TensorFlow Edge TPU | *_edgetpu.tflite |
|
||
|
| PaddlePaddle | *_paddle_model |
|
||
|
| NCNN | *_ncnn_model |
|
||
|
|
||
|
This class offers dynamic backend switching capabilities based on the input model format, making it easier to deploy
|
||
|
models across various platforms.
|
||
|
"""
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def __init__(
|
||
|
self,
|
||
|
weights="yolov8n.pt",
|
||
|
device=torch.device("cpu"),
|
||
|
dnn=False,
|
||
|
data=None,
|
||
|
fp16=False,
|
||
|
batch=1,
|
||
|
fuse=True,
|
||
|
verbose=True,
|
||
|
):
|
||
|
"""
|
||
|
Initialize the AutoBackend for inference.
|
||
|
|
||
|
Args:
|
||
|
weights (str): Path to the model weights file. Defaults to 'yolov8n.pt'.
|
||
|
device (torch.device): Device to run the model on. Defaults to CPU.
|
||
|
dnn (bool): Use OpenCV DNN module for ONNX inference. Defaults to False.
|
||
|
data (str | Path | optional): Path to the additional data.yaml file containing class names. Optional.
|
||
|
fp16 (bool): Enable half-precision inference. Supported only on specific backends. Defaults to False.
|
||
|
batch (int): Batch-size to assume for inference.
|
||
|
fuse (bool): Fuse Conv2D + BatchNorm layers for optimization. Defaults to True.
|
||
|
verbose (bool): Enable verbose logging. Defaults to True.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
w = str(weights[0] if isinstance(weights, list) else weights)
|
||
|
nn_module = isinstance(weights, torch.nn.Module)
|
||
|
(
|
||
|
pt,
|
||
|
jit,
|
||
|
onnx,
|
||
|
xml,
|
||
|
engine,
|
||
|
coreml,
|
||
|
saved_model,
|
||
|
pb,
|
||
|
tflite,
|
||
|
edgetpu,
|
||
|
tfjs,
|
||
|
paddle,
|
||
|
ncnn,
|
||
|
triton,
|
||
|
) = self._model_type(w)
|
||
|
fp16 &= pt or jit or onnx or xml or engine or nn_module or triton # FP16
|
||
|
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
||
|
stride = 32 # default stride
|
||
|
model, metadata = None, None
|
||
|
|
||
|
# Set device
|
||
|
cuda = torch.cuda.is_available() and device.type != "cpu" # use CUDA
|
||
|
if cuda and not any([nn_module, pt, jit, engine, onnx]): # GPU dataloader formats
|
||
|
device = torch.device("cpu")
|
||
|
cuda = False
|
||
|
|
||
|
# Download if not local
|
||
|
if not (pt or triton or nn_module):
|
||
|
w = attempt_download_asset(w)
|
||
|
|
||
|
# In-memory PyTorch model
|
||
|
if nn_module:
|
||
|
model = weights.to(device)
|
||
|
if fuse:
|
||
|
model = model.fuse(verbose=verbose)
|
||
|
if hasattr(model, "kpt_shape"):
|
||
|
kpt_shape = model.kpt_shape # pose-only
|
||
|
stride = max(int(model.stride.max()), 32) # model stride
|
||
|
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||
|
model.half() if fp16 else model.float()
|
||
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||
|
pt = True
|
||
|
|
||
|
# PyTorch
|
||
|
elif pt:
|
||
|
from ultralytics.nn.tasks import attempt_load_weights
|
||
|
|
||
|
model = attempt_load_weights(
|
||
|
weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse
|
||
|
)
|
||
|
if hasattr(model, "kpt_shape"):
|
||
|
kpt_shape = model.kpt_shape # pose-only
|
||
|
stride = max(int(model.stride.max()), 32) # model stride
|
||
|
names = model.module.names if hasattr(model, "module") else model.names # get class names
|
||
|
model.half() if fp16 else model.float()
|
||
|
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
||
|
|
||
|
# TorchScript
|
||
|
elif jit:
|
||
|
LOGGER.info(f"Loading {w} for TorchScript inference...")
|
||
|
extra_files = {"config.txt": ""} # model metadata
|
||
|
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
||
|
model.half() if fp16 else model.float()
|
||
|
if extra_files["config.txt"]: # load metadata dict
|
||
|
metadata = json.loads(extra_files["config.txt"], object_hook=lambda x: dict(x.items()))
|
||
|
|
||
|
# ONNX OpenCV DNN
|
||
|
elif dnn:
|
||
|
LOGGER.info(f"Loading {w} for ONNX OpenCV DNN inference...")
|
||
|
check_requirements("opencv-python>=4.5.4")
|
||
|
net = cv2.dnn.readNetFromONNX(w)
|
||
|
|
||
|
# ONNX Runtime
|
||
|
elif onnx:
|
||
|
LOGGER.info(f"Loading {w} for ONNX Runtime inference...")
|
||
|
check_requirements(("onnx", "onnxruntime-gpu" if cuda else "onnxruntime"))
|
||
|
if IS_RASPBERRYPI or IS_JETSON:
|
||
|
# Fix 'numpy.linalg._umath_linalg' has no attribute '_ilp64' for TF SavedModel on RPi and Jetson
|
||
|
check_requirements("numpy==1.23.5")
|
||
|
import onnxruntime
|
||
|
|
||
|
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if cuda else ["CPUExecutionProvider"]
|
||
|
session = onnxruntime.InferenceSession(w, providers=providers)
|
||
|
output_names = [x.name for x in session.get_outputs()]
|
||
|
metadata = session.get_modelmeta().custom_metadata_map
|
||
|
|
||
|
# OpenVINO
|
||
|
elif xml:
|
||
|
LOGGER.info(f"Loading {w} for OpenVINO inference...")
|
||
|
check_requirements("openvino>=2024.0.0")
|
||
|
import openvino as ov
|
||
|
|
||
|
core = ov.Core()
|
||
|
w = Path(w)
|
||
|
if not w.is_file(): # if not *.xml
|
||
|
w = next(w.glob("*.xml")) # get *.xml file from *_openvino_model dir
|
||
|
ov_model = core.read_model(model=str(w), weights=w.with_suffix(".bin"))
|
||
|
if ov_model.get_parameters()[0].get_layout().empty:
|
||
|
ov_model.get_parameters()[0].set_layout(ov.Layout("NCHW"))
|
||
|
|
||
|
# OpenVINO inference modes are 'LATENCY', 'THROUGHPUT' (not recommended), or 'CUMULATIVE_THROUGHPUT'
|
||
|
inference_mode = "CUMULATIVE_THROUGHPUT" if batch > 1 else "LATENCY"
|
||
|
LOGGER.info(f"Using OpenVINO {inference_mode} mode for batch={batch} inference...")
|
||
|
ov_compiled_model = core.compile_model(
|
||
|
ov_model,
|
||
|
device_name="AUTO", # AUTO selects best available device, do not modify
|
||
|
config={"PERFORMANCE_HINT": inference_mode},
|
||
|
)
|
||
|
input_name = ov_compiled_model.input().get_any_name()
|
||
|
metadata = w.parent / "metadata.yaml"
|
||
|
|
||
|
# TensorRT
|
||
|
elif engine:
|
||
|
LOGGER.info(f"Loading {w} for TensorRT inference...")
|
||
|
try:
|
||
|
import tensorrt as trt # noqa https://developer.nvidia.com/nvidia-tensorrt-download
|
||
|
except ImportError:
|
||
|
if LINUX:
|
||
|
check_requirements("tensorrt>7.0.0,<=10.1.0")
|
||
|
import tensorrt as trt # noqa
|
||
|
check_version(trt.__version__, ">=7.0.0", hard=True)
|
||
|
check_version(trt.__version__, "<=10.1.0", msg="https://github.com/ultralytics/ultralytics/pull/14239")
|
||
|
if device.type == "cpu":
|
||
|
device = torch.device("cuda:0")
|
||
|
Binding = namedtuple("Binding", ("name", "dtype", "shape", "data", "ptr"))
|
||
|
logger = trt.Logger(trt.Logger.INFO)
|
||
|
# Read file
|
||
|
with open(w, "rb") as f, trt.Runtime(logger) as runtime:
|
||
|
try:
|
||
|
meta_len = int.from_bytes(f.read(4), byteorder="little") # read metadata length
|
||
|
metadata = json.loads(f.read(meta_len).decode("utf-8")) # read metadata
|
||
|
except UnicodeDecodeError:
|
||
|
f.seek(0) # engine file may lack embedded Ultralytics metadata
|
||
|
model = runtime.deserialize_cuda_engine(f.read()) # read engine
|
||
|
|
||
|
# Model context
|
||
|
try:
|
||
|
context = model.create_execution_context()
|
||
|
except Exception as e: # model is None
|
||
|
LOGGER.error(f"ERROR: TensorRT model exported with a different version than {trt.__version__}\n")
|
||
|
raise e
|
||
|
|
||
|
bindings = OrderedDict()
|
||
|
output_names = []
|
||
|
fp16 = False # default updated below
|
||
|
dynamic = False
|
||
|
is_trt10 = not hasattr(model, "num_bindings")
|
||
|
num = range(model.num_io_tensors) if is_trt10 else range(model.num_bindings)
|
||
|
for i in num:
|
||
|
if is_trt10:
|
||
|
name = model.get_tensor_name(i)
|
||
|
dtype = trt.nptype(model.get_tensor_dtype(name))
|
||
|
is_input = model.get_tensor_mode(name) == trt.TensorIOMode.INPUT
|
||
|
if is_input:
|
||
|
if -1 in tuple(model.get_tensor_shape(name)):
|
||
|
dynamic = True
|
||
|
context.set_input_shape(name, tuple(model.get_tensor_profile_shape(name, 0)[1]))
|
||
|
if dtype == np.float16:
|
||
|
fp16 = True
|
||
|
else:
|
||
|
output_names.append(name)
|
||
|
shape = tuple(context.get_tensor_shape(name))
|
||
|
else: # TensorRT < 10.0
|
||
|
name = model.get_binding_name(i)
|
||
|
dtype = trt.nptype(model.get_binding_dtype(i))
|
||
|
is_input = model.binding_is_input(i)
|
||
|
if model.binding_is_input(i):
|
||
|
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
||
|
dynamic = True
|
||
|
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[1]))
|
||
|
if dtype == np.float16:
|
||
|
fp16 = True
|
||
|
else:
|
||
|
output_names.append(name)
|
||
|
shape = tuple(context.get_binding_shape(i))
|
||
|
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
||
|
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
||
|
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
||
|
batch_size = bindings["images"].shape[0] # if dynamic, this is instead max batch size
|
||
|
|
||
|
# CoreML
|
||
|
elif coreml:
|
||
|
LOGGER.info(f"Loading {w} for CoreML inference...")
|
||
|
import coremltools as ct
|
||
|
|
||
|
model = ct.models.MLModel(w)
|
||
|
metadata = dict(model.user_defined_metadata)
|
||
|
|
||
|
# TF SavedModel
|
||
|
elif saved_model:
|
||
|
LOGGER.info(f"Loading {w} for TensorFlow SavedModel inference...")
|
||
|
import tensorflow as tf
|
||
|
|
||
|
keras = False # assume TF1 saved_model
|
||
|
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
||
|
metadata = Path(w) / "metadata.yaml"
|
||
|
|
||
|
# TF GraphDef
|
||
|
elif pb: # https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
||
|
LOGGER.info(f"Loading {w} for TensorFlow GraphDef inference...")
|
||
|
import tensorflow as tf
|
||
|
|
||
|
from ultralytics.engine.exporter import gd_outputs
|
||
|
|
||
|
def wrap_frozen_graph(gd, inputs, outputs):
|
||
|
"""Wrap frozen graphs for deployment."""
|
||
|
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
||
|
ge = x.graph.as_graph_element
|
||
|
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
||
|
|
||
|
gd = tf.Graph().as_graph_def() # TF GraphDef
|
||
|
with open(w, "rb") as f:
|
||
|
gd.ParseFromString(f.read())
|
||
|
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
||
|
with contextlib.suppress(StopIteration): # find metadata in SavedModel alongside GraphDef
|
||
|
metadata = next(Path(w).resolve().parent.rglob(f"{Path(w).stem}_saved_model*/metadata.yaml"))
|
||
|
|
||
|
# TFLite or TFLite Edge TPU
|
||
|
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
||
|
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
||
|
from tflite_runtime.interpreter import Interpreter, load_delegate
|
||
|
except ImportError:
|
||
|
import tensorflow as tf
|
||
|
|
||
|
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate
|
||
|
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
||
|
LOGGER.info(f"Loading {w} for TensorFlow Lite Edge TPU inference...")
|
||
|
delegate = {"Linux": "libedgetpu.so.1", "Darwin": "libedgetpu.1.dylib", "Windows": "edgetpu.dll"}[
|
||
|
platform.system()
|
||
|
]
|
||
|
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
||
|
else: # TFLite
|
||
|
LOGGER.info(f"Loading {w} for TensorFlow Lite inference...")
|
||
|
interpreter = Interpreter(model_path=w) # load TFLite model
|
||
|
interpreter.allocate_tensors() # allocate
|
||
|
input_details = interpreter.get_input_details() # inputs
|
||
|
output_details = interpreter.get_output_details() # outputs
|
||
|
# Load metadata
|
||
|
with contextlib.suppress(zipfile.BadZipFile):
|
||
|
with zipfile.ZipFile(w, "r") as model:
|
||
|
meta_file = model.namelist()[0]
|
||
|
metadata = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
||
|
|
||
|
# TF.js
|
||
|
elif tfjs:
|
||
|
raise NotImplementedError("YOLOv8 TF.js inference is not currently supported.")
|
||
|
|
||
|
# PaddlePaddle
|
||
|
elif paddle:
|
||
|
LOGGER.info(f"Loading {w} for PaddlePaddle inference...")
|
||
|
check_requirements("paddlepaddle-gpu" if cuda else "paddlepaddle")
|
||
|
import paddle.inference as pdi # noqa
|
||
|
|
||
|
w = Path(w)
|
||
|
if not w.is_file(): # if not *.pdmodel
|
||
|
w = next(w.rglob("*.pdmodel")) # get *.pdmodel file from *_paddle_model dir
|
||
|
config = pdi.Config(str(w), str(w.with_suffix(".pdiparams")))
|
||
|
if cuda:
|
||
|
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
||
|
predictor = pdi.create_predictor(config)
|
||
|
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
||
|
output_names = predictor.get_output_names()
|
||
|
metadata = w.parents[1] / "metadata.yaml"
|
||
|
|
||
|
# NCNN
|
||
|
elif ncnn:
|
||
|
LOGGER.info(f"Loading {w} for NCNN inference...")
|
||
|
check_requirements("git+https://github.com/Tencent/ncnn.git" if ARM64 else "ncnn") # requires NCNN
|
||
|
import ncnn as pyncnn
|
||
|
|
||
|
net = pyncnn.Net()
|
||
|
net.opt.use_vulkan_compute = cuda
|
||
|
w = Path(w)
|
||
|
if not w.is_file(): # if not *.param
|
||
|
w = next(w.glob("*.param")) # get *.param file from *_ncnn_model dir
|
||
|
net.load_param(str(w))
|
||
|
net.load_model(str(w.with_suffix(".bin")))
|
||
|
metadata = w.parent / "metadata.yaml"
|
||
|
|
||
|
# NVIDIA Triton Inference Server
|
||
|
elif triton:
|
||
|
check_requirements("tritonclient[all]")
|
||
|
from ultralytics.utils.triton import TritonRemoteModel
|
||
|
|
||
|
model = TritonRemoteModel(w)
|
||
|
|
||
|
# Any other format (unsupported)
|
||
|
else:
|
||
|
from ultralytics.engine.exporter import export_formats
|
||
|
|
||
|
raise TypeError(
|
||
|
f"model='{w}' is not a supported model format. "
|
||
|
f"See https://docs.ultralytics.com/modes/predict for help.\n\n{export_formats()}"
|
||
|
)
|
||
|
|
||
|
# Load external metadata YAML
|
||
|
if isinstance(metadata, (str, Path)) and Path(metadata).exists():
|
||
|
metadata = yaml_load(metadata)
|
||
|
if metadata and isinstance(metadata, dict):
|
||
|
for k, v in metadata.items():
|
||
|
if k in {"stride", "batch"}:
|
||
|
metadata[k] = int(v)
|
||
|
elif k in {"imgsz", "names", "kpt_shape"} and isinstance(v, str):
|
||
|
metadata[k] = eval(v)
|
||
|
stride = metadata["stride"]
|
||
|
task = metadata["task"]
|
||
|
batch = metadata["batch"]
|
||
|
imgsz = metadata["imgsz"]
|
||
|
names = metadata["names"]
|
||
|
kpt_shape = metadata.get("kpt_shape")
|
||
|
elif not (pt or triton or nn_module):
|
||
|
LOGGER.warning(f"WARNING ⚠️ Metadata not found for 'model={weights}'")
|
||
|
|
||
|
# Check names
|
||
|
if "names" not in locals(): # names missing
|
||
|
names = default_class_names(data)
|
||
|
names = check_class_names(names)
|
||
|
|
||
|
# Disable gradients
|
||
|
if pt:
|
||
|
for p in model.parameters():
|
||
|
p.requires_grad = False
|
||
|
|
||
|
self.__dict__.update(locals()) # assign all variables to self
|
||
|
|
||
|
def forward(self, im, augment=False, visualize=False, embed=None):
|
||
|
"""
|
||
|
Runs inference on the YOLOv8 MultiBackend model.
|
||
|
|
||
|
Args:
|
||
|
im (torch.Tensor): The image tensor to perform inference on.
|
||
|
augment (bool): whether to perform data augmentation during inference, defaults to False
|
||
|
visualize (bool): whether to visualize the output predictions, defaults to False
|
||
|
embed (list, optional): A list of feature vectors/embeddings to return.
|
||
|
|
||
|
Returns:
|
||
|
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
|
||
|
"""
|
||
|
b, ch, h, w = im.shape # batch, channel, height, width
|
||
|
if self.fp16 and im.dtype != torch.float16:
|
||
|
im = im.half() # to FP16
|
||
|
if self.nhwc:
|
||
|
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
||
|
|
||
|
# PyTorch
|
||
|
if self.pt or self.nn_module:
|
||
|
y = self.model(im, augment=augment, visualize=visualize, embed=embed)
|
||
|
|
||
|
# TorchScript
|
||
|
elif self.jit:
|
||
|
y = self.model(im)
|
||
|
|
||
|
# ONNX OpenCV DNN
|
||
|
elif self.dnn:
|
||
|
im = im.cpu().numpy() # torch to numpy
|
||
|
self.net.setInput(im)
|
||
|
y = self.net.forward()
|
||
|
|
||
|
# ONNX Runtime
|
||
|
elif self.onnx:
|
||
|
im = im.cpu().numpy() # torch to numpy
|
||
|
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
||
|
|
||
|
# OpenVINO
|
||
|
elif self.xml:
|
||
|
im = im.cpu().numpy() # FP32
|
||
|
|
||
|
if self.inference_mode in {"THROUGHPUT", "CUMULATIVE_THROUGHPUT"}: # optimized for larger batch-sizes
|
||
|
n = im.shape[0] # number of images in batch
|
||
|
results = [None] * n # preallocate list with None to match the number of images
|
||
|
|
||
|
def callback(request, userdata):
|
||
|
"""Places result in preallocated list using userdata index."""
|
||
|
results[userdata] = request.results
|
||
|
|
||
|
# Create AsyncInferQueue, set the callback and start asynchronous inference for each input image
|
||
|
async_queue = self.ov.runtime.AsyncInferQueue(self.ov_compiled_model)
|
||
|
async_queue.set_callback(callback)
|
||
|
for i in range(n):
|
||
|
# Start async inference with userdata=i to specify the position in results list
|
||
|
async_queue.start_async(inputs={self.input_name: im[i : i + 1]}, userdata=i) # keep image as BCHW
|
||
|
async_queue.wait_all() # wait for all inference requests to complete
|
||
|
y = np.concatenate([list(r.values())[0] for r in results])
|
||
|
|
||
|
else: # inference_mode = "LATENCY", optimized for fastest first result at batch-size 1
|
||
|
y = list(self.ov_compiled_model(im).values())
|
||
|
|
||
|
# TensorRT
|
||
|
elif self.engine:
|
||
|
if self.dynamic or im.shape != self.bindings["images"].shape:
|
||
|
if self.is_trt10:
|
||
|
self.context.set_input_shape("images", im.shape)
|
||
|
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
|
||
|
for name in self.output_names:
|
||
|
self.bindings[name].data.resize_(tuple(self.context.get_tensor_shape(name)))
|
||
|
else:
|
||
|
i = self.model.get_binding_index("images")
|
||
|
self.context.set_binding_shape(i, im.shape)
|
||
|
self.bindings["images"] = self.bindings["images"]._replace(shape=im.shape)
|
||
|
for name in self.output_names:
|
||
|
i = self.model.get_binding_index(name)
|
||
|
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
||
|
|
||
|
s = self.bindings["images"].shape
|
||
|
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
||
|
self.binding_addrs["images"] = int(im.data_ptr())
|
||
|
self.context.execute_v2(list(self.binding_addrs.values()))
|
||
|
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
||
|
|
||
|
# CoreML
|
||
|
elif self.coreml:
|
||
|
im = im[0].cpu().numpy()
|
||
|
im_pil = Image.fromarray((im * 255).astype("uint8"))
|
||
|
# im = im.resize((192, 320), Image.BILINEAR)
|
||
|
y = self.model.predict({"image": im_pil}) # coordinates are xywh normalized
|
||
|
if "confidence" in y:
|
||
|
raise TypeError(
|
||
|
"Ultralytics only supports inference of non-pipelined CoreML models exported with "
|
||
|
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export."
|
||
|
)
|
||
|
# TODO: CoreML NMS inference handling
|
||
|
# from ultralytics.utils.ops import xywh2xyxy
|
||
|
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
||
|
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
|
||
|
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
||
|
elif len(y) == 1: # classification model
|
||
|
y = list(y.values())
|
||
|
elif len(y) == 2: # segmentation model
|
||
|
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
||
|
|
||
|
# PaddlePaddle
|
||
|
elif self.paddle:
|
||
|
im = im.cpu().numpy().astype(np.float32)
|
||
|
self.input_handle.copy_from_cpu(im)
|
||
|
self.predictor.run()
|
||
|
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
||
|
|
||
|
# NCNN
|
||
|
elif self.ncnn:
|
||
|
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
|
||
|
with self.net.create_extractor() as ex:
|
||
|
ex.input(self.net.input_names()[0], mat_in)
|
||
|
# WARNING: 'output_names' sorted as a temporary fix for https://github.com/pnnx/pnnx/issues/130
|
||
|
y = [np.array(ex.extract(x)[1])[None] for x in sorted(self.net.output_names())]
|
||
|
|
||
|
# NVIDIA Triton Inference Server
|
||
|
elif self.triton:
|
||
|
im = im.cpu().numpy() # torch to numpy
|
||
|
y = self.model(im)
|
||
|
|
||
|
# TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
||
|
else:
|
||
|
im = im.cpu().numpy()
|
||
|
if self.saved_model: # SavedModel
|
||
|
y = self.model(im, training=False) if self.keras else self.model(im)
|
||
|
if not isinstance(y, list):
|
||
|
y = [y]
|
||
|
elif self.pb: # GraphDef
|
||
|
y = self.frozen_func(x=self.tf.constant(im))
|
||
|
if (self.task == "segment" or len(y) == 2) and len(self.names) == 999: # segments and names not defined
|
||
|
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
|
||
|
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
|
||
|
self.names = {i: f"class{i}" for i in range(nc)}
|
||
|
else: # Lite or Edge TPU
|
||
|
details = self.input_details[0]
|
||
|
is_int = details["dtype"] in {np.int8, np.int16} # is TFLite quantized int8 or int16 model
|
||
|
if is_int:
|
||
|
scale, zero_point = details["quantization"]
|
||
|
im = (im / scale + zero_point).astype(details["dtype"]) # de-scale
|
||
|
self.interpreter.set_tensor(details["index"], im)
|
||
|
self.interpreter.invoke()
|
||
|
y = []
|
||
|
for output in self.output_details:
|
||
|
x = self.interpreter.get_tensor(output["index"])
|
||
|
if is_int:
|
||
|
scale, zero_point = output["quantization"]
|
||
|
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
||
|
if x.ndim == 3: # if task is not classification, excluding masks (ndim=4) as well
|
||
|
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
|
||
|
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
|
||
|
x[:, [0, 2]] *= w
|
||
|
x[:, [1, 3]] *= h
|
||
|
y.append(x)
|
||
|
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
|
||
|
if len(y) == 2: # segment with (det, proto) output order reversed
|
||
|
if len(y[1].shape) != 4:
|
||
|
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
|
||
|
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
|
||
|
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
||
|
|
||
|
# for x in y:
|
||
|
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
|
||
|
if isinstance(y, (list, tuple)):
|
||
|
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
||
|
else:
|
||
|
return self.from_numpy(y)
|
||
|
|
||
|
def from_numpy(self, x):
|
||
|
"""
|
||
|
Convert a numpy array to a tensor.
|
||
|
|
||
|
Args:
|
||
|
x (np.ndarray): The array to be converted.
|
||
|
|
||
|
Returns:
|
||
|
(torch.Tensor): The converted tensor
|
||
|
"""
|
||
|
return torch.tensor(x).to(self.device) if isinstance(x, np.ndarray) else x
|
||
|
|
||
|
def warmup(self, imgsz=(1, 3, 640, 640)):
|
||
|
"""
|
||
|
Warm up the model by running one forward pass with a dummy input.
|
||
|
|
||
|
Args:
|
||
|
imgsz (tuple): The shape of the dummy input tensor in the format (batch_size, channels, height, width)
|
||
|
"""
|
||
|
import torchvision # noqa (import here so torchvision import time not recorded in postprocess time)
|
||
|
|
||
|
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton, self.nn_module
|
||
|
if any(warmup_types) and (self.device.type != "cpu" or self.triton):
|
||
|
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
||
|
for _ in range(2 if self.jit else 1):
|
||
|
self.forward(im) # warmup
|
||
|
|
||
|
@staticmethod
|
||
|
def _model_type(p="path/to/model.pt"):
|
||
|
"""
|
||
|
This function takes a path to a model file and returns the model type. Possibles types are pt, jit, onnx, xml,
|
||
|
engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, ncnn or paddle.
|
||
|
|
||
|
Args:
|
||
|
p: path to the model file. Defaults to path/to/model.pt
|
||
|
|
||
|
Examples:
|
||
|
>>> model = AutoBackend(weights="path/to/model.onnx")
|
||
|
>>> model_type = model._model_type() # returns "onnx"
|
||
|
"""
|
||
|
from ultralytics.engine.exporter import export_formats
|
||
|
|
||
|
sf = list(export_formats().Suffix) # export suffixes
|
||
|
if not is_url(p) and not isinstance(p, str):
|
||
|
check_suffix(p, sf) # checks
|
||
|
name = Path(p).name
|
||
|
types = [s in name for s in sf]
|
||
|
types[5] |= name.endswith(".mlmodel") # retain support for older Apple CoreML *.mlmodel formats
|
||
|
types[8] &= not types[9] # tflite &= not edgetpu
|
||
|
if any(types):
|
||
|
triton = False
|
||
|
else:
|
||
|
from urllib.parse import urlsplit
|
||
|
|
||
|
url = urlsplit(p)
|
||
|
triton = bool(url.netloc) and bool(url.path) and url.scheme in {"http", "grpc"}
|
||
|
|
||
|
return types + [triton]
|