pose-detect/ultralytics/utils/callbacks/base.py

219 lines
5.6 KiB
Python
Raw Permalink Normal View History

2024-08-14 16:10:21 +08:00
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""Base callbacks."""
from collections import defaultdict
from copy import deepcopy
# Trainer callbacks ----------------------------------------------------------------------------------------------------
def on_pretrain_routine_start(trainer):
"""Called before the pretraining routine starts."""
pass
def on_pretrain_routine_end(trainer):
"""Called after the pretraining routine ends."""
pass
def on_train_start(trainer):
"""Called when the training starts."""
pass
def on_train_epoch_start(trainer):
"""Called at the start of each training epoch."""
pass
def on_train_batch_start(trainer):
"""Called at the start of each training batch."""
pass
def optimizer_step(trainer):
"""Called when the optimizer takes a step."""
pass
def on_before_zero_grad(trainer):
"""Called before the gradients are set to zero."""
pass
def on_train_batch_end(trainer):
"""Called at the end of each training batch."""
pass
def on_train_epoch_end(trainer):
"""Called at the end of each training epoch."""
pass
def on_fit_epoch_end(trainer):
"""Called at the end of each fit epoch (train + val)."""
pass
def on_model_save(trainer):
"""Called when the model is saved."""
pass
def on_train_end(trainer):
"""Called when the training ends."""
pass
def on_params_update(trainer):
"""Called when the model parameters are updated."""
pass
def teardown(trainer):
"""Called during the teardown of the training process."""
pass
# Validator callbacks --------------------------------------------------------------------------------------------------
def on_val_start(validator):
"""Called when the validation starts."""
pass
def on_val_batch_start(validator):
"""Called at the start of each validation batch."""
pass
def on_val_batch_end(validator):
"""Called at the end of each validation batch."""
pass
def on_val_end(validator):
"""Called when the validation ends."""
pass
# Predictor callbacks --------------------------------------------------------------------------------------------------
def on_predict_start(predictor):
"""Called when the prediction starts."""
pass
def on_predict_batch_start(predictor):
"""Called at the start of each prediction batch."""
pass
def on_predict_batch_end(predictor):
"""Called at the end of each prediction batch."""
pass
def on_predict_postprocess_end(predictor):
"""Called after the post-processing of the prediction ends."""
pass
def on_predict_end(predictor):
"""Called when the prediction ends."""
pass
# Exporter callbacks ---------------------------------------------------------------------------------------------------
def on_export_start(exporter):
"""Called when the model export starts."""
pass
def on_export_end(exporter):
"""Called when the model export ends."""
pass
default_callbacks = {
# Run in trainer
"on_pretrain_routine_start": [on_pretrain_routine_start],
"on_pretrain_routine_end": [on_pretrain_routine_end],
"on_train_start": [on_train_start],
"on_train_epoch_start": [on_train_epoch_start],
"on_train_batch_start": [on_train_batch_start],
"optimizer_step": [optimizer_step],
"on_before_zero_grad": [on_before_zero_grad],
"on_train_batch_end": [on_train_batch_end],
"on_train_epoch_end": [on_train_epoch_end],
"on_fit_epoch_end": [on_fit_epoch_end], # fit = train + val
"on_model_save": [on_model_save],
"on_train_end": [on_train_end],
"on_params_update": [on_params_update],
"teardown": [teardown],
# Run in validator
"on_val_start": [on_val_start],
"on_val_batch_start": [on_val_batch_start],
"on_val_batch_end": [on_val_batch_end],
"on_val_end": [on_val_end],
# Run in predictor
"on_predict_start": [on_predict_start],
"on_predict_batch_start": [on_predict_batch_start],
"on_predict_postprocess_end": [on_predict_postprocess_end],
"on_predict_batch_end": [on_predict_batch_end],
"on_predict_end": [on_predict_end],
# Run in exporter
"on_export_start": [on_export_start],
"on_export_end": [on_export_end],
}
def get_default_callbacks():
"""
Return a copy of the default_callbacks dictionary with lists as default values.
Returns:
(defaultdict): A defaultdict with keys from default_callbacks and empty lists as default values.
"""
return defaultdict(list, deepcopy(default_callbacks))
def add_integration_callbacks(instance):
"""
Add integration callbacks from various sources to the instance's callbacks.
Args:
instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary
of callback lists.
"""
# Load HUB callbacks
from .hub import callbacks as hub_cb
callbacks_list = [hub_cb]
# Load training callbacks
if "Trainer" in instance.__class__.__name__:
from .clearml import callbacks as clear_cb
from .comet import callbacks as comet_cb
from .dvc import callbacks as dvc_cb
from .mlflow import callbacks as mlflow_cb
from .neptune import callbacks as neptune_cb
from .raytune import callbacks as tune_cb
from .tensorboard import callbacks as tb_cb
from .wb import callbacks as wb_cb
callbacks_list.extend([clear_cb, comet_cb, dvc_cb, mlflow_cb, neptune_cb, tune_cb, tb_cb, wb_cb])
# Add the callbacks to the callbacks dictionary
for callbacks in callbacks_list:
for k, v in callbacks.items():
if v not in instance.callbacks[k]:
instance.callbacks[k].append(v)