177 lines
6.3 KiB
Python
177 lines
6.3 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import math
|
||
|
|
||
|
import cv2
|
||
|
|
||
|
from ultralytics.utils.checks import check_imshow
|
||
|
from ultralytics.utils.plotting import Annotator, colors
|
||
|
|
||
|
|
||
|
class DistanceCalculation:
|
||
|
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
names,
|
||
|
pixels_per_meter=10,
|
||
|
view_img=False,
|
||
|
line_thickness=2,
|
||
|
line_color=(255, 255, 0),
|
||
|
centroid_color=(255, 0, 255),
|
||
|
):
|
||
|
"""
|
||
|
Initializes the DistanceCalculation class with the given parameters.
|
||
|
|
||
|
Args:
|
||
|
names (dict): Dictionary of classes names.
|
||
|
pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10.
|
||
|
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
|
||
|
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
|
||
|
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
|
||
|
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
|
||
|
"""
|
||
|
# Visual & image information
|
||
|
self.im0 = None
|
||
|
self.annotator = None
|
||
|
self.view_img = view_img
|
||
|
self.line_color = line_color
|
||
|
self.centroid_color = centroid_color
|
||
|
|
||
|
# Prediction & tracking information
|
||
|
self.clss = None
|
||
|
self.names = names
|
||
|
self.boxes = None
|
||
|
self.line_thickness = line_thickness
|
||
|
self.trk_ids = None
|
||
|
|
||
|
# Distance calculation information
|
||
|
self.centroids = []
|
||
|
self.pixel_per_meter = pixels_per_meter
|
||
|
|
||
|
# Mouse event information
|
||
|
self.left_mouse_count = 0
|
||
|
self.selected_boxes = {}
|
||
|
|
||
|
# Check if environment supports imshow
|
||
|
self.env_check = check_imshow(warn=True)
|
||
|
|
||
|
def mouse_event_for_distance(self, event, x, y, flags, param):
|
||
|
"""
|
||
|
Handles mouse events to select regions in a real-time video stream.
|
||
|
|
||
|
Args:
|
||
|
event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.).
|
||
|
x (int): X-coordinate of the mouse pointer.
|
||
|
y (int): Y-coordinate of the mouse pointer.
|
||
|
flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.).
|
||
|
param (dict): Additional parameters passed to the function.
|
||
|
"""
|
||
|
if event == cv2.EVENT_LBUTTONDOWN:
|
||
|
self.left_mouse_count += 1
|
||
|
if self.left_mouse_count <= 2:
|
||
|
for box, track_id in zip(self.boxes, self.trk_ids):
|
||
|
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
|
||
|
self.selected_boxes[track_id] = box
|
||
|
|
||
|
elif event == cv2.EVENT_RBUTTONDOWN:
|
||
|
self.selected_boxes = {}
|
||
|
self.left_mouse_count = 0
|
||
|
|
||
|
def extract_tracks(self, tracks):
|
||
|
"""
|
||
|
Extracts tracking results from the provided data.
|
||
|
|
||
|
Args:
|
||
|
tracks (list): List of tracks obtained from the object tracking process.
|
||
|
"""
|
||
|
self.boxes = tracks[0].boxes.xyxy.cpu()
|
||
|
self.clss = tracks[0].boxes.cls.cpu().tolist()
|
||
|
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
||
|
|
||
|
@staticmethod
|
||
|
def calculate_centroid(box):
|
||
|
"""
|
||
|
Calculates the centroid of a bounding box.
|
||
|
|
||
|
Args:
|
||
|
box (list): Bounding box coordinates [x1, y1, x2, y2].
|
||
|
|
||
|
Returns:
|
||
|
(tuple): Centroid coordinates (x, y).
|
||
|
"""
|
||
|
return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2)
|
||
|
|
||
|
def calculate_distance(self, centroid1, centroid2):
|
||
|
"""
|
||
|
Calculates the distance between two centroids.
|
||
|
|
||
|
Args:
|
||
|
centroid1 (tuple): Coordinates of the first centroid (x, y).
|
||
|
centroid2 (tuple): Coordinates of the second centroid (x, y).
|
||
|
|
||
|
Returns:
|
||
|
(tuple): Distance in meters and millimeters.
|
||
|
"""
|
||
|
pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2)
|
||
|
distance_m = pixel_distance / self.pixel_per_meter
|
||
|
distance_mm = distance_m * 1000
|
||
|
return distance_m, distance_mm
|
||
|
|
||
|
def start_process(self, im0, tracks):
|
||
|
"""
|
||
|
Processes the video frame and calculates the distance between two bounding boxes.
|
||
|
|
||
|
Args:
|
||
|
im0 (ndarray): The image frame.
|
||
|
tracks (list): List of tracks obtained from the object tracking process.
|
||
|
|
||
|
Returns:
|
||
|
(ndarray): The processed image frame.
|
||
|
"""
|
||
|
self.im0 = im0
|
||
|
if tracks[0].boxes.id is None:
|
||
|
if self.view_img:
|
||
|
self.display_frames()
|
||
|
return im0
|
||
|
|
||
|
self.extract_tracks(tracks)
|
||
|
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
||
|
|
||
|
for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids):
|
||
|
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
||
|
|
||
|
if len(self.selected_boxes) == 2:
|
||
|
for trk_id in self.selected_boxes.keys():
|
||
|
if trk_id == track_id:
|
||
|
self.selected_boxes[track_id] = box
|
||
|
|
||
|
if len(self.selected_boxes) == 2:
|
||
|
self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes]
|
||
|
|
||
|
distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1])
|
||
|
self.annotator.plot_distance_and_line(
|
||
|
distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color
|
||
|
)
|
||
|
|
||
|
self.centroids = []
|
||
|
|
||
|
if self.view_img and self.env_check:
|
||
|
self.display_frames()
|
||
|
|
||
|
return im0
|
||
|
|
||
|
def display_frames(self):
|
||
|
"""Displays the current frame with annotations."""
|
||
|
cv2.namedWindow("Ultralytics Distance Estimation")
|
||
|
cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance)
|
||
|
cv2.imshow("Ultralytics Distance Estimation", self.im0)
|
||
|
|
||
|
if cv2.waitKey(1) & 0xFF == ord("q"):
|
||
|
return
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
names = {0: "person", 1: "car"} # example class names
|
||
|
distance_calculation = DistanceCalculation(names)
|