pose-detect/ultralytics/utils/callbacks/dvc.py

146 lines
4.9 KiB
Python
Raw Normal View History

2024-08-14 16:10:21 +08:00
# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, checks
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["dvc"] is True # verify integration is enabled
import dvclive
assert checks.check_version("dvclive", "2.11.0", verbose=True)
import os
import re
from pathlib import Path
# DVCLive logger instance
live = None
_processed_plots = {}
# `on_fit_epoch_end` is called on final validation (probably need to be fixed) for now this is the way we
# distinguish final evaluation of the best model vs last epoch validation
_training_epoch = False
except (ImportError, AssertionError, TypeError):
dvclive = None
def _log_images(path, prefix=""):
"""Logs images at specified path with an optional prefix using DVCLive."""
if live:
name = path.name
# Group images by batch to enable sliders in UI
if m := re.search(r"_batch(\d+)", name):
ni = m[1]
new_stem = re.sub(r"_batch(\d+)", "_batch", path.stem)
name = (Path(new_stem) / ni).with_suffix(path.suffix)
live.log_image(os.path.join(prefix, name), path)
def _log_plots(plots, prefix=""):
"""Logs plot images for training progress if they have not been previously processed."""
for name, params in plots.items():
timestamp = params["timestamp"]
if _processed_plots.get(name) != timestamp:
_log_images(name, prefix)
_processed_plots[name] = timestamp
def _log_confusion_matrix(validator):
"""Logs the confusion matrix for the given validator using DVCLive."""
targets = []
preds = []
matrix = validator.confusion_matrix.matrix
names = list(validator.names.values())
if validator.confusion_matrix.task == "detect":
names += ["background"]
for ti, pred in enumerate(matrix.T.astype(int)):
for pi, num in enumerate(pred):
targets.extend([names[ti]] * num)
preds.extend([names[pi]] * num)
live.log_sklearn_plot("confusion_matrix", targets, preds, name="cf.json", normalized=True)
def on_pretrain_routine_start(trainer):
"""Initializes DVCLive logger for training metadata during pre-training routine."""
try:
global live
live = dvclive.Live(save_dvc_exp=True, cache_images=True)
LOGGER.info("DVCLive is detected and auto logging is enabled (run 'yolo settings dvc=False' to disable).")
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}")
def on_pretrain_routine_end(trainer):
"""Logs plots related to the training process at the end of the pretraining routine."""
_log_plots(trainer.plots, "train")
def on_train_start(trainer):
"""Logs the training parameters if DVCLive logging is active."""
if live:
live.log_params(trainer.args)
def on_train_epoch_start(trainer):
"""Sets the global variable _training_epoch value to True at the start of training each epoch."""
global _training_epoch
_training_epoch = True
def on_fit_epoch_end(trainer):
"""Logs training metrics and model info, and advances to next step on the end of each fit epoch."""
global _training_epoch
if live and _training_epoch:
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value)
if trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
for metric, value in model_info_for_loggers(trainer).items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, "train")
_log_plots(trainer.validator.plots, "val")
live.next_step()
_training_epoch = False
def on_train_end(trainer):
"""Logs the best metrics, plots, and confusion matrix at the end of training if DVCLive is active."""
if live:
# At the end log the best metrics. It runs validator on the best model internally.
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
for metric, value in all_metrics.items():
live.log_metric(metric, value, plot=False)
_log_plots(trainer.plots, "val")
_log_plots(trainer.validator.plots, "val")
_log_confusion_matrix(trainer.validator)
if trainer.best.exists():
live.log_artifact(trainer.best, copy=True, type="model")
live.end()
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_pretrain_routine_end": on_pretrain_routine_end,
"on_train_start": on_train_start,
"on_train_epoch_start": on_train_epoch_start,
"on_fit_epoch_end": on_fit_epoch_end,
"on_train_end": on_train_end,
}
if dvclive
else {}
)