146 lines
4.9 KiB
Python
146 lines
4.9 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING, checks
|
||
|
|
||
|
try:
|
||
|
assert not TESTS_RUNNING # do not log pytest
|
||
|
assert SETTINGS["dvc"] is True # verify integration is enabled
|
||
|
import dvclive
|
||
|
|
||
|
assert checks.check_version("dvclive", "2.11.0", verbose=True)
|
||
|
|
||
|
import os
|
||
|
import re
|
||
|
from pathlib import Path
|
||
|
|
||
|
# DVCLive logger instance
|
||
|
live = None
|
||
|
_processed_plots = {}
|
||
|
|
||
|
# `on_fit_epoch_end` is called on final validation (probably need to be fixed) for now this is the way we
|
||
|
# distinguish final evaluation of the best model vs last epoch validation
|
||
|
_training_epoch = False
|
||
|
|
||
|
except (ImportError, AssertionError, TypeError):
|
||
|
dvclive = None
|
||
|
|
||
|
|
||
|
def _log_images(path, prefix=""):
|
||
|
"""Logs images at specified path with an optional prefix using DVCLive."""
|
||
|
if live:
|
||
|
name = path.name
|
||
|
|
||
|
# Group images by batch to enable sliders in UI
|
||
|
if m := re.search(r"_batch(\d+)", name):
|
||
|
ni = m[1]
|
||
|
new_stem = re.sub(r"_batch(\d+)", "_batch", path.stem)
|
||
|
name = (Path(new_stem) / ni).with_suffix(path.suffix)
|
||
|
|
||
|
live.log_image(os.path.join(prefix, name), path)
|
||
|
|
||
|
|
||
|
def _log_plots(plots, prefix=""):
|
||
|
"""Logs plot images for training progress if they have not been previously processed."""
|
||
|
for name, params in plots.items():
|
||
|
timestamp = params["timestamp"]
|
||
|
if _processed_plots.get(name) != timestamp:
|
||
|
_log_images(name, prefix)
|
||
|
_processed_plots[name] = timestamp
|
||
|
|
||
|
|
||
|
def _log_confusion_matrix(validator):
|
||
|
"""Logs the confusion matrix for the given validator using DVCLive."""
|
||
|
targets = []
|
||
|
preds = []
|
||
|
matrix = validator.confusion_matrix.matrix
|
||
|
names = list(validator.names.values())
|
||
|
if validator.confusion_matrix.task == "detect":
|
||
|
names += ["background"]
|
||
|
|
||
|
for ti, pred in enumerate(matrix.T.astype(int)):
|
||
|
for pi, num in enumerate(pred):
|
||
|
targets.extend([names[ti]] * num)
|
||
|
preds.extend([names[pi]] * num)
|
||
|
|
||
|
live.log_sklearn_plot("confusion_matrix", targets, preds, name="cf.json", normalized=True)
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_start(trainer):
|
||
|
"""Initializes DVCLive logger for training metadata during pre-training routine."""
|
||
|
try:
|
||
|
global live
|
||
|
live = dvclive.Live(save_dvc_exp=True, cache_images=True)
|
||
|
LOGGER.info("DVCLive is detected and auto logging is enabled (run 'yolo settings dvc=False' to disable).")
|
||
|
except Exception as e:
|
||
|
LOGGER.warning(f"WARNING ⚠️ DVCLive installed but not initialized correctly, not logging this run. {e}")
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_end(trainer):
|
||
|
"""Logs plots related to the training process at the end of the pretraining routine."""
|
||
|
_log_plots(trainer.plots, "train")
|
||
|
|
||
|
|
||
|
def on_train_start(trainer):
|
||
|
"""Logs the training parameters if DVCLive logging is active."""
|
||
|
if live:
|
||
|
live.log_params(trainer.args)
|
||
|
|
||
|
|
||
|
def on_train_epoch_start(trainer):
|
||
|
"""Sets the global variable _training_epoch value to True at the start of training each epoch."""
|
||
|
global _training_epoch
|
||
|
_training_epoch = True
|
||
|
|
||
|
|
||
|
def on_fit_epoch_end(trainer):
|
||
|
"""Logs training metrics and model info, and advances to next step on the end of each fit epoch."""
|
||
|
global _training_epoch
|
||
|
if live and _training_epoch:
|
||
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
|
||
|
for metric, value in all_metrics.items():
|
||
|
live.log_metric(metric, value)
|
||
|
|
||
|
if trainer.epoch == 0:
|
||
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||
|
|
||
|
for metric, value in model_info_for_loggers(trainer).items():
|
||
|
live.log_metric(metric, value, plot=False)
|
||
|
|
||
|
_log_plots(trainer.plots, "train")
|
||
|
_log_plots(trainer.validator.plots, "val")
|
||
|
|
||
|
live.next_step()
|
||
|
_training_epoch = False
|
||
|
|
||
|
|
||
|
def on_train_end(trainer):
|
||
|
"""Logs the best metrics, plots, and confusion matrix at the end of training if DVCLive is active."""
|
||
|
if live:
|
||
|
# At the end log the best metrics. It runs validator on the best model internally.
|
||
|
all_metrics = {**trainer.label_loss_items(trainer.tloss, prefix="train"), **trainer.metrics, **trainer.lr}
|
||
|
for metric, value in all_metrics.items():
|
||
|
live.log_metric(metric, value, plot=False)
|
||
|
|
||
|
_log_plots(trainer.plots, "val")
|
||
|
_log_plots(trainer.validator.plots, "val")
|
||
|
_log_confusion_matrix(trainer.validator)
|
||
|
|
||
|
if trainer.best.exists():
|
||
|
live.log_artifact(trainer.best, copy=True, type="model")
|
||
|
|
||
|
live.end()
|
||
|
|
||
|
|
||
|
callbacks = (
|
||
|
{
|
||
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
||
|
"on_pretrain_routine_end": on_pretrain_routine_end,
|
||
|
"on_train_start": on_train_start,
|
||
|
"on_train_epoch_start": on_train_epoch_start,
|
||
|
"on_fit_epoch_end": on_fit_epoch_end,
|
||
|
"on_train_end": on_train_end,
|
||
|
}
|
||
|
if dvclive
|
||
|
else {}
|
||
|
)
|