164 lines
6.6 KiB
Python
164 lines
6.6 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
from ultralytics.utils import SETTINGS, TESTS_RUNNING
|
||
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
||
|
|
||
|
try:
|
||
|
assert not TESTS_RUNNING # do not log pytest
|
||
|
assert SETTINGS["wandb"] is True # verify integration is enabled
|
||
|
import wandb as wb
|
||
|
|
||
|
assert hasattr(wb, "__version__") # verify package is not directory
|
||
|
_processed_plots = {}
|
||
|
|
||
|
except (ImportError, AssertionError):
|
||
|
wb = None
|
||
|
|
||
|
|
||
|
def _custom_table(x, y, classes, title="Precision Recall Curve", x_title="Recall", y_title="Precision"):
|
||
|
"""
|
||
|
Create and log a custom metric visualization to wandb.plot.pr_curve.
|
||
|
|
||
|
This function crafts a custom metric visualization that mimics the behavior of the default wandb precision-recall
|
||
|
curve while allowing for enhanced customization. The visual metric is useful for monitoring model performance across
|
||
|
different classes.
|
||
|
|
||
|
Args:
|
||
|
x (List): Values for the x-axis; expected to have length N.
|
||
|
y (List): Corresponding values for the y-axis; also expected to have length N.
|
||
|
classes (List): Labels identifying the class of each point; length N.
|
||
|
title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'.
|
||
|
x_title (str, optional): Label for the x-axis; defaults to 'Recall'.
|
||
|
y_title (str, optional): Label for the y-axis; defaults to 'Precision'.
|
||
|
|
||
|
Returns:
|
||
|
(wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization.
|
||
|
"""
|
||
|
import pandas # scope for faster 'import ultralytics'
|
||
|
|
||
|
df = pandas.DataFrame({"class": classes, "y": y, "x": x}).round(3)
|
||
|
fields = {"x": "x", "y": "y", "class": "class"}
|
||
|
string_fields = {"title": title, "x-axis-title": x_title, "y-axis-title": y_title}
|
||
|
return wb.plot_table(
|
||
|
"wandb/area-under-curve/v0", wb.Table(dataframe=df), fields=fields, string_fields=string_fields
|
||
|
)
|
||
|
|
||
|
|
||
|
def _plot_curve(
|
||
|
x,
|
||
|
y,
|
||
|
names=None,
|
||
|
id="precision-recall",
|
||
|
title="Precision Recall Curve",
|
||
|
x_title="Recall",
|
||
|
y_title="Precision",
|
||
|
num_x=100,
|
||
|
only_mean=False,
|
||
|
):
|
||
|
"""
|
||
|
Log a metric curve visualization.
|
||
|
|
||
|
This function generates a metric curve based on input data and logs the visualization to wandb.
|
||
|
The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag.
|
||
|
|
||
|
Args:
|
||
|
x (np.ndarray): Data points for the x-axis with length N.
|
||
|
y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C is the number of classes.
|
||
|
names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to [].
|
||
|
id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'.
|
||
|
title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'.
|
||
|
x_title (str, optional): Label for the x-axis. Defaults to 'Recall'.
|
||
|
y_title (str, optional): Label for the y-axis. Defaults to 'Precision'.
|
||
|
num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100.
|
||
|
only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True.
|
||
|
|
||
|
Note:
|
||
|
The function leverages the '_custom_table' function to generate the actual visualization.
|
||
|
"""
|
||
|
import numpy as np
|
||
|
|
||
|
# Create new x
|
||
|
if names is None:
|
||
|
names = []
|
||
|
x_new = np.linspace(x[0], x[-1], num_x).round(5)
|
||
|
|
||
|
# Create arrays for logging
|
||
|
x_log = x_new.tolist()
|
||
|
y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist()
|
||
|
|
||
|
if only_mean:
|
||
|
table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title])
|
||
|
wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)})
|
||
|
else:
|
||
|
classes = ["mean"] * len(x_log)
|
||
|
for i, yi in enumerate(y):
|
||
|
x_log.extend(x_new) # add new x
|
||
|
y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x
|
||
|
classes.extend([names[i]] * len(x_new)) # add class names
|
||
|
wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False)
|
||
|
|
||
|
|
||
|
def _log_plots(plots, step):
|
||
|
"""Logs plots from the input dictionary if they haven't been logged already at the specified step."""
|
||
|
for name, params in plots.copy().items(): # shallow copy to prevent plots dict changing during iteration
|
||
|
timestamp = params["timestamp"]
|
||
|
if _processed_plots.get(name) != timestamp:
|
||
|
wb.run.log({name.stem: wb.Image(str(name))}, step=step)
|
||
|
_processed_plots[name] = timestamp
|
||
|
|
||
|
|
||
|
def on_pretrain_routine_start(trainer):
|
||
|
"""Initiate and start project if module is present."""
|
||
|
wb.run or wb.init(project=trainer.args.project or "YOLOv8", name=trainer.args.name, config=vars(trainer.args))
|
||
|
|
||
|
|
||
|
def on_fit_epoch_end(trainer):
|
||
|
"""Logs training metrics and model information at the end of an epoch."""
|
||
|
wb.run.log(trainer.metrics, step=trainer.epoch + 1)
|
||
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||
|
if trainer.epoch == 0:
|
||
|
wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1)
|
||
|
|
||
|
|
||
|
def on_train_epoch_end(trainer):
|
||
|
"""Log metrics and save images at the end of each training epoch."""
|
||
|
wb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1)
|
||
|
wb.run.log(trainer.lr, step=trainer.epoch + 1)
|
||
|
if trainer.epoch == 1:
|
||
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
|
|
||
|
|
||
|
def on_train_end(trainer):
|
||
|
"""Save the best model as an artifact at end of training."""
|
||
|
_log_plots(trainer.validator.plots, step=trainer.epoch + 1)
|
||
|
_log_plots(trainer.plots, step=trainer.epoch + 1)
|
||
|
art = wb.Artifact(type="model", name=f"run_{wb.run.id}_model")
|
||
|
if trainer.best.exists():
|
||
|
art.add_file(trainer.best)
|
||
|
wb.run.log_artifact(art, aliases=["best"])
|
||
|
for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results):
|
||
|
x, y, x_title, y_title = curve_values
|
||
|
_plot_curve(
|
||
|
x,
|
||
|
y,
|
||
|
names=list(trainer.validator.metrics.names.values()),
|
||
|
id=f"curves/{curve_name}",
|
||
|
title=curve_name,
|
||
|
x_title=x_title,
|
||
|
y_title=y_title,
|
||
|
)
|
||
|
wb.run.finish() # required or run continues on dashboard
|
||
|
|
||
|
|
||
|
callbacks = (
|
||
|
{
|
||
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
||
|
"on_train_epoch_end": on_train_epoch_end,
|
||
|
"on_fit_epoch_end": on_fit_epoch_end,
|
||
|
"on_train_end": on_train_end,
|
||
|
}
|
||
|
if wb
|
||
|
else {}
|
||
|
)
|