313 lines
11 KiB
Python
313 lines
11 KiB
Python
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
||
|
|
||
|
import warnings
|
||
|
from itertools import cycle
|
||
|
|
||
|
import cv2
|
||
|
import matplotlib.pyplot as plt
|
||
|
import numpy as np
|
||
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
||
|
from matplotlib.figure import Figure
|
||
|
|
||
|
|
||
|
class Analytics:
|
||
|
"""A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
type,
|
||
|
writer,
|
||
|
im0_shape,
|
||
|
title="ultralytics",
|
||
|
x_label="x",
|
||
|
y_label="y",
|
||
|
bg_color="white",
|
||
|
fg_color="black",
|
||
|
line_color="yellow",
|
||
|
line_width=2,
|
||
|
points_width=10,
|
||
|
fontsize=13,
|
||
|
view_img=False,
|
||
|
save_img=True,
|
||
|
max_points=50,
|
||
|
):
|
||
|
"""
|
||
|
Initialize the Analytics class with various chart types.
|
||
|
|
||
|
Args:
|
||
|
type (str): Type of chart to initialize ('line', 'bar', 'pie', or 'area').
|
||
|
writer (object): Video writer object to save the frames.
|
||
|
im0_shape (tuple): Shape of the input image (width, height).
|
||
|
title (str): Title of the chart.
|
||
|
x_label (str): Label for the x-axis.
|
||
|
y_label (str): Label for the y-axis.
|
||
|
bg_color (str): Background color of the chart.
|
||
|
fg_color (str): Foreground (text) color of the chart.
|
||
|
line_color (str): Line color for line charts.
|
||
|
line_width (int): Width of the lines in line charts.
|
||
|
points_width (int): Width of line points highlighter
|
||
|
fontsize (int): Font size for chart text.
|
||
|
view_img (bool): Whether to display the image.
|
||
|
save_img (bool): Whether to save the image.
|
||
|
max_points (int): Specifies when to remove the oldest points in a graph for multiple lines.
|
||
|
"""
|
||
|
|
||
|
self.bg_color = bg_color
|
||
|
self.fg_color = fg_color
|
||
|
self.view_img = view_img
|
||
|
self.save_img = save_img
|
||
|
self.title = title
|
||
|
self.writer = writer
|
||
|
self.max_points = max_points
|
||
|
self.line_color = line_color
|
||
|
self.x_label = x_label
|
||
|
self.y_label = y_label
|
||
|
self.points_width = points_width
|
||
|
self.line_width = line_width
|
||
|
self.fontsize = fontsize
|
||
|
|
||
|
# Set figure size based on image shape
|
||
|
figsize = (im0_shape[0] / 100, im0_shape[1] / 100)
|
||
|
|
||
|
if type in {"line", "area"}:
|
||
|
# Initialize line or area plot
|
||
|
self.lines = {}
|
||
|
self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
|
||
|
self.canvas = FigureCanvas(self.fig)
|
||
|
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
|
||
|
if type == "line":
|
||
|
(self.line,) = self.ax.plot([], [], color=self.line_color, linewidth=self.line_width)
|
||
|
|
||
|
elif type in {"bar", "pie"}:
|
||
|
# Initialize bar or pie plot
|
||
|
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
|
||
|
self.ax.set_facecolor(self.bg_color)
|
||
|
color_palette = [
|
||
|
(31, 119, 180),
|
||
|
(255, 127, 14),
|
||
|
(44, 160, 44),
|
||
|
(214, 39, 40),
|
||
|
(148, 103, 189),
|
||
|
(140, 86, 75),
|
||
|
(227, 119, 194),
|
||
|
(127, 127, 127),
|
||
|
(188, 189, 34),
|
||
|
(23, 190, 207),
|
||
|
]
|
||
|
self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette]
|
||
|
self.color_cycle = cycle(self.color_palette)
|
||
|
self.color_mapping = {}
|
||
|
|
||
|
# Ensure pie chart is circular
|
||
|
self.ax.axis("equal") if type == "pie" else None
|
||
|
|
||
|
# Set common axis properties
|
||
|
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
|
||
|
self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
||
|
self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
||
|
self.ax.tick_params(axis="both", colors=self.fg_color)
|
||
|
|
||
|
def update_area(self, frame_number, counts_dict):
|
||
|
"""
|
||
|
Update the area graph with new data for multiple classes.
|
||
|
|
||
|
Args:
|
||
|
frame_number (int): The current frame number.
|
||
|
counts_dict (dict): Dictionary with class names as keys and counts as values.
|
||
|
"""
|
||
|
|
||
|
x_data = np.array([])
|
||
|
y_data_dict = {key: np.array([]) for key in counts_dict.keys()}
|
||
|
|
||
|
if self.ax.lines:
|
||
|
x_data = self.ax.lines[0].get_xdata()
|
||
|
for line, key in zip(self.ax.lines, counts_dict.keys()):
|
||
|
y_data_dict[key] = line.get_ydata()
|
||
|
|
||
|
x_data = np.append(x_data, float(frame_number))
|
||
|
max_length = len(x_data)
|
||
|
|
||
|
for key in counts_dict.keys():
|
||
|
y_data_dict[key] = np.append(y_data_dict[key], float(counts_dict[key]))
|
||
|
if len(y_data_dict[key]) < max_length:
|
||
|
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant")
|
||
|
|
||
|
# Remove the oldest points if the number of points exceeds max_points
|
||
|
if len(x_data) > self.max_points:
|
||
|
x_data = x_data[1:]
|
||
|
for key in counts_dict.keys():
|
||
|
y_data_dict[key] = y_data_dict[key][1:]
|
||
|
|
||
|
self.ax.clear()
|
||
|
|
||
|
colors = ["#E1FF25", "#0BDBEB", "#FF64DA", "#111F68", "#042AFF"]
|
||
|
color_cycle = cycle(colors)
|
||
|
|
||
|
for key, y_data in y_data_dict.items():
|
||
|
color = next(color_cycle)
|
||
|
self.ax.fill_between(x_data, y_data, color=color, alpha=0.6)
|
||
|
self.ax.plot(
|
||
|
x_data,
|
||
|
y_data,
|
||
|
color=color,
|
||
|
linewidth=self.line_width,
|
||
|
marker="o",
|
||
|
markersize=self.points_width,
|
||
|
label=f"{key} Data Points",
|
||
|
)
|
||
|
|
||
|
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
|
||
|
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
||
|
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
||
|
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.fg_color)
|
||
|
|
||
|
# Set legend text color
|
||
|
for text in legend.get_texts():
|
||
|
text.set_color(self.fg_color)
|
||
|
|
||
|
self.canvas.draw()
|
||
|
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
||
|
self.write_and_display(im0)
|
||
|
|
||
|
def update_line(self, frame_number, total_counts):
|
||
|
"""
|
||
|
Update the line graph with new data.
|
||
|
|
||
|
Args:
|
||
|
frame_number (int): The current frame number.
|
||
|
total_counts (int): The total counts to plot.
|
||
|
"""
|
||
|
|
||
|
# Update line graph data
|
||
|
x_data = self.line.get_xdata()
|
||
|
y_data = self.line.get_ydata()
|
||
|
x_data = np.append(x_data, float(frame_number))
|
||
|
y_data = np.append(y_data, float(total_counts))
|
||
|
self.line.set_data(x_data, y_data)
|
||
|
self.ax.relim()
|
||
|
self.ax.autoscale_view()
|
||
|
self.canvas.draw()
|
||
|
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
||
|
self.write_and_display(im0)
|
||
|
|
||
|
def update_multiple_lines(self, counts_dict, labels_list, frame_number):
|
||
|
"""
|
||
|
Update the line graph with multiple classes.
|
||
|
|
||
|
Args:
|
||
|
counts_dict (int): Dictionary include each class counts.
|
||
|
labels_list (int): list include each classes names.
|
||
|
frame_number (int): The current frame number.
|
||
|
"""
|
||
|
warnings.warn("Display is not supported for multiple lines, output will be stored normally!")
|
||
|
for obj in labels_list:
|
||
|
if obj not in self.lines:
|
||
|
(line,) = self.ax.plot([], [], label=obj, marker="o", markersize=self.points_width)
|
||
|
self.lines[obj] = line
|
||
|
|
||
|
x_data = self.lines[obj].get_xdata()
|
||
|
y_data = self.lines[obj].get_ydata()
|
||
|
|
||
|
# Remove the initial point if the number of points exceeds max_points
|
||
|
if len(x_data) >= self.max_points:
|
||
|
x_data = np.delete(x_data, 0)
|
||
|
y_data = np.delete(y_data, 0)
|
||
|
|
||
|
x_data = np.append(x_data, float(frame_number)) # Ensure frame_number is converted to float
|
||
|
y_data = np.append(y_data, float(counts_dict.get(obj, 0))) # Ensure total_count is converted to float
|
||
|
self.lines[obj].set_data(x_data, y_data)
|
||
|
|
||
|
self.ax.relim()
|
||
|
self.ax.autoscale_view()
|
||
|
self.ax.legend()
|
||
|
self.canvas.draw()
|
||
|
|
||
|
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
||
|
self.view_img = False # for multiple line view_img not supported yet, coming soon!
|
||
|
self.write_and_display(im0)
|
||
|
|
||
|
def write_and_display(self, im0):
|
||
|
"""
|
||
|
Write and display the line graph
|
||
|
Args:
|
||
|
im0 (ndarray): Image for processing
|
||
|
"""
|
||
|
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
|
||
|
cv2.imshow(self.title, im0) if self.view_img else None
|
||
|
self.writer.write(im0) if self.save_img else None
|
||
|
|
||
|
def update_bar(self, count_dict):
|
||
|
"""
|
||
|
Update the bar graph with new data.
|
||
|
|
||
|
Args:
|
||
|
count_dict (dict): Dictionary containing the count data to plot.
|
||
|
"""
|
||
|
|
||
|
# Update bar graph data
|
||
|
self.ax.clear()
|
||
|
self.ax.set_facecolor(self.bg_color)
|
||
|
labels = list(count_dict.keys())
|
||
|
counts = list(count_dict.values())
|
||
|
|
||
|
# Map labels to colors
|
||
|
for label in labels:
|
||
|
if label not in self.color_mapping:
|
||
|
self.color_mapping[label] = next(self.color_cycle)
|
||
|
|
||
|
colors = [self.color_mapping[label] for label in labels]
|
||
|
|
||
|
bars = self.ax.bar(labels, counts, color=colors)
|
||
|
for bar, count in zip(bars, counts):
|
||
|
self.ax.text(
|
||
|
bar.get_x() + bar.get_width() / 2,
|
||
|
bar.get_height(),
|
||
|
str(count),
|
||
|
ha="center",
|
||
|
va="bottom",
|
||
|
color=self.fg_color,
|
||
|
)
|
||
|
|
||
|
# Display and save the updated graph
|
||
|
canvas = FigureCanvas(self.fig)
|
||
|
canvas.draw()
|
||
|
buf = canvas.buffer_rgba()
|
||
|
im0 = np.asarray(buf)
|
||
|
self.write_and_display(im0)
|
||
|
|
||
|
def update_pie(self, classes_dict):
|
||
|
"""
|
||
|
Update the pie chart with new data.
|
||
|
|
||
|
Args:
|
||
|
classes_dict (dict): Dictionary containing the class data to plot.
|
||
|
"""
|
||
|
|
||
|
# Update pie chart data
|
||
|
labels = list(classes_dict.keys())
|
||
|
sizes = list(classes_dict.values())
|
||
|
total = sum(sizes)
|
||
|
percentages = [size / total * 100 for size in sizes]
|
||
|
start_angle = 90
|
||
|
self.ax.clear()
|
||
|
|
||
|
# Create pie chart without labels inside the slices
|
||
|
wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color})
|
||
|
|
||
|
# Construct legend labels with percentages
|
||
|
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
|
||
|
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
|
||
|
|
||
|
# Adjust layout to fit the legend
|
||
|
self.fig.tight_layout()
|
||
|
self.fig.subplots_adjust(left=0.1, right=0.75)
|
||
|
|
||
|
# Display and save the updated chart
|
||
|
im0 = self.fig.canvas.draw()
|
||
|
im0 = np.array(self.fig.canvas.renderer.buffer_rgba())
|
||
|
self.write_and_display(im0)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
Analytics("line", writer=None, im0_shape=None)
|