# Ultralytics YOLO 🚀, AGPL-3.0 license import math import cv2 from ultralytics.utils.checks import check_imshow from ultralytics.utils.plotting import Annotator, colors class DistanceCalculation: """A class to calculate distance between two objects in a real-time video stream based on their tracks.""" def __init__( self, names, pixels_per_meter=10, view_img=False, line_thickness=2, line_color=(255, 255, 0), centroid_color=(255, 0, 255), ): """ Initializes the DistanceCalculation class with the given parameters. Args: names (dict): Dictionary of classes names. pixels_per_meter (int, optional): Conversion factor from pixels to meters. Defaults to 10. view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False. line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2. line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0). centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255). """ # Visual & image information self.im0 = None self.annotator = None self.view_img = view_img self.line_color = line_color self.centroid_color = centroid_color # Prediction & tracking information self.clss = None self.names = names self.boxes = None self.line_thickness = line_thickness self.trk_ids = None # Distance calculation information self.centroids = [] self.pixel_per_meter = pixels_per_meter # Mouse event information self.left_mouse_count = 0 self.selected_boxes = {} # Check if environment supports imshow self.env_check = check_imshow(warn=True) def mouse_event_for_distance(self, event, x, y, flags, param): """ Handles mouse events to select regions in a real-time video stream. Args: event (int): Type of mouse event (e.g., cv2.EVENT_MOUSEMOVE, cv2.EVENT_LBUTTONDOWN, etc.). x (int): X-coordinate of the mouse pointer. y (int): Y-coordinate of the mouse pointer. flags (int): Flags associated with the event (e.g., cv2.EVENT_FLAG_CTRLKEY, cv2.EVENT_FLAG_SHIFTKEY, etc.). param (dict): Additional parameters passed to the function. """ if event == cv2.EVENT_LBUTTONDOWN: self.left_mouse_count += 1 if self.left_mouse_count <= 2: for box, track_id in zip(self.boxes, self.trk_ids): if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes: self.selected_boxes[track_id] = box elif event == cv2.EVENT_RBUTTONDOWN: self.selected_boxes = {} self.left_mouse_count = 0 def extract_tracks(self, tracks): """ Extracts tracking results from the provided data. Args: tracks (list): List of tracks obtained from the object tracking process. """ self.boxes = tracks[0].boxes.xyxy.cpu() self.clss = tracks[0].boxes.cls.cpu().tolist() self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() @staticmethod def calculate_centroid(box): """ Calculates the centroid of a bounding box. Args: box (list): Bounding box coordinates [x1, y1, x2, y2]. Returns: (tuple): Centroid coordinates (x, y). """ return int((box[0] + box[2]) // 2), int((box[1] + box[3]) // 2) def calculate_distance(self, centroid1, centroid2): """ Calculates the distance between two centroids. Args: centroid1 (tuple): Coordinates of the first centroid (x, y). centroid2 (tuple): Coordinates of the second centroid (x, y). Returns: (tuple): Distance in meters and millimeters. """ pixel_distance = math.sqrt((centroid1[0] - centroid2[0]) ** 2 + (centroid1[1] - centroid2[1]) ** 2) distance_m = pixel_distance / self.pixel_per_meter distance_mm = distance_m * 1000 return distance_m, distance_mm def start_process(self, im0, tracks): """ Processes the video frame and calculates the distance between two bounding boxes. Args: im0 (ndarray): The image frame. tracks (list): List of tracks obtained from the object tracking process. Returns: (ndarray): The processed image frame. """ self.im0 = im0 if tracks[0].boxes.id is None: if self.view_img: self.display_frames() return im0 self.extract_tracks(tracks) self.annotator = Annotator(self.im0, line_width=self.line_thickness) for box, cls, track_id in zip(self.boxes, self.clss, self.trk_ids): self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)]) if len(self.selected_boxes) == 2: for trk_id in self.selected_boxes.keys(): if trk_id == track_id: self.selected_boxes[track_id] = box if len(self.selected_boxes) == 2: self.centroids = [self.calculate_centroid(self.selected_boxes[trk_id]) for trk_id in self.selected_boxes] distance_m, distance_mm = self.calculate_distance(self.centroids[0], self.centroids[1]) self.annotator.plot_distance_and_line( distance_m, distance_mm, self.centroids, self.line_color, self.centroid_color ) self.centroids = [] if self.view_img and self.env_check: self.display_frames() return im0 def display_frames(self): """Displays the current frame with annotations.""" cv2.namedWindow("Ultralytics Distance Estimation") cv2.setMouseCallback("Ultralytics Distance Estimation", self.mouse_event_for_distance) cv2.imshow("Ultralytics Distance Estimation", self.im0) if cv2.waitKey(1) & 0xFF == ord("q"): return if __name__ == "__main__": names = {0: "person", 1: "car"} # example class names distance_calculation = DistanceCalculation(names)