# Ultralytics YOLO 🚀, AGPL-3.0 license from collections import defaultdict from time import time import cv2 import numpy as np from ultralytics.utils.checks import check_imshow from ultralytics.utils.plotting import Annotator, colors class SpeedEstimator: """A class to estimate the speed of objects in a real-time video stream based on their tracks.""" def __init__(self, names, reg_pts=None, view_img=False, line_thickness=2, region_thickness=5, spdl_dist_thresh=10): """ Initializes the SpeedEstimator with the given parameters. Args: names (dict): Dictionary of class names. reg_pts (list, optional): List of region points for speed estimation. Defaults to [(20, 400), (1260, 400)]. view_img (bool, optional): Whether to display the image with annotations. Defaults to False. line_thickness (int, optional): Thickness of the lines for drawing boxes and tracks. Defaults to 2. region_thickness (int, optional): Thickness of the region lines. Defaults to 5. spdl_dist_thresh (int, optional): Distance threshold for speed calculation. Defaults to 10. """ # Visual & image information self.im0 = None self.annotator = None self.view_img = view_img # Region information self.reg_pts = reg_pts if reg_pts is not None else [(20, 400), (1260, 400)] self.region_thickness = region_thickness # Tracking information self.clss = None self.names = names self.boxes = None self.trk_ids = None self.trk_pts = None self.line_thickness = line_thickness self.trk_history = defaultdict(list) # Speed estimation information self.current_time = 0 self.dist_data = {} self.trk_idslist = [] self.spdl_dist_thresh = spdl_dist_thresh self.trk_previous_times = {} self.trk_previous_points = {} # Check if the environment supports imshow self.env_check = check_imshow(warn=True) def extract_tracks(self, tracks): """ Extracts results from the provided tracking data. Args: tracks (list): List of tracks obtained from the object tracking process. """ self.boxes = tracks[0].boxes.xyxy.cpu() self.clss = tracks[0].boxes.cls.cpu().tolist() self.trk_ids = tracks[0].boxes.id.int().cpu().tolist() def store_track_info(self, track_id, box): """ Stores track data. Args: track_id (int): Object track id. box (list): Object bounding box data. Returns: (list): Updated tracking history for the given track_id. """ track = self.trk_history[track_id] bbox_center = (float((box[0] + box[2]) / 2), float((box[1] + box[3]) / 2)) track.append(bbox_center) if len(track) > 30: track.pop(0) self.trk_pts = np.hstack(track).astype(np.int32).reshape((-1, 1, 2)) return track def plot_box_and_track(self, track_id, box, cls, track): """ Plots track and bounding box. Args: track_id (int): Object track id. box (list): Object bounding box data. cls (str): Object class name. track (list): Tracking history for drawing tracks path. """ speed_label = f"{int(self.dist_data[track_id])} km/h" if track_id in self.dist_data else self.names[int(cls)] bbox_color = colors(int(track_id)) if track_id in self.dist_data else (255, 0, 255) self.annotator.box_label(box, speed_label, bbox_color) cv2.polylines(self.im0, [self.trk_pts], isClosed=False, color=(0, 255, 0), thickness=1) cv2.circle(self.im0, (int(track[-1][0]), int(track[-1][1])), 5, bbox_color, -1) def calculate_speed(self, trk_id, track): """ Calculates the speed of an object. Args: trk_id (int): Object track id. track (list): Tracking history for drawing tracks path. """ if not self.reg_pts[0][0] < track[-1][0] < self.reg_pts[1][0]: return if self.reg_pts[1][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[1][1] + self.spdl_dist_thresh: direction = "known" elif self.reg_pts[0][1] - self.spdl_dist_thresh < track[-1][1] < self.reg_pts[0][1] + self.spdl_dist_thresh: direction = "known" else: direction = "unknown" if self.trk_previous_times.get(trk_id) != 0 and direction != "unknown" and trk_id not in self.trk_idslist: self.trk_idslist.append(trk_id) time_difference = time() - self.trk_previous_times[trk_id] if time_difference > 0: dist_difference = np.abs(track[-1][1] - self.trk_previous_points[trk_id][1]) speed = dist_difference / time_difference self.dist_data[trk_id] = speed self.trk_previous_times[trk_id] = time() self.trk_previous_points[trk_id] = track[-1] def estimate_speed(self, im0, tracks, region_color=(255, 0, 0)): """ Estimates the speed of objects based on tracking data. Args: im0 (ndarray): Image. tracks (list): List of tracks obtained from the object tracking process. region_color (tuple, optional): Color to use when drawing regions. Defaults to (255, 0, 0). Returns: (ndarray): The image with annotated boxes and tracks. """ self.im0 = im0 if tracks[0].boxes.id is None: if self.view_img and self.env_check: self.display_frames() return im0 self.extract_tracks(tracks) self.annotator = Annotator(self.im0, line_width=self.line_thickness) self.annotator.draw_region(reg_pts=self.reg_pts, color=region_color, thickness=self.region_thickness) for box, trk_id, cls in zip(self.boxes, self.trk_ids, self.clss): track = self.store_track_info(trk_id, box) if trk_id not in self.trk_previous_times: self.trk_previous_times[trk_id] = 0 self.plot_box_and_track(trk_id, box, cls, track) self.calculate_speed(trk_id, track) if self.view_img and self.env_check: self.display_frames() return im0 def display_frames(self): """Displays the current frame.""" cv2.imshow("Ultralytics Speed Estimation", self.im0) if cv2.waitKey(1) & 0xFF == ord("q"): return if __name__ == "__main__": names = {0: "person", 1: "car"} # example class names speed_estimator = SpeedEstimator(names)