# Ultralytics YOLO 🚀, AGPL-3.0 license import numpy as np import scipy from scipy.spatial.distance import cdist from ultralytics.utils.metrics import batch_probiou, bbox_ioa try: import lap # for linear_assignment assert lap.__version__ # verify package is not directory except (ImportError, AssertionError, AttributeError): from ultralytics.utils.checks import check_requirements check_requirements("lapx>=0.5.2") # update to lap package from https://github.com/rathaROG/lapx import lap def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = True) -> tuple: """ Perform linear assignment using scipy or lap.lapjv. Args: cost_matrix (np.ndarray): The matrix containing cost values for assignments. thresh (float): Threshold for considering an assignment valid. use_lap (bool, optional): Whether to use lap.lapjv. Defaults to True. Returns: Tuple with: - matched indices - unmatched indices from 'a' - unmatched indices from 'b' """ if cost_matrix.size == 0: return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1])) if use_lap: # Use lap.lapjv # https://github.com/gatagat/lap _, x, y = lap.lapjv(cost_matrix, extend_cost=True, cost_limit=thresh) matches = [[ix, mx] for ix, mx in enumerate(x) if mx >= 0] unmatched_a = np.where(x < 0)[0] unmatched_b = np.where(y < 0)[0] else: # Use scipy.optimize.linear_sum_assignment # https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_assignment.html x, y = scipy.optimize.linear_sum_assignment(cost_matrix) # row x, col y matches = np.asarray([[x[i], y[i]] for i in range(len(x)) if cost_matrix[x[i], y[i]] <= thresh]) if len(matches) == 0: unmatched_a = list(np.arange(cost_matrix.shape[0])) unmatched_b = list(np.arange(cost_matrix.shape[1])) else: unmatched_a = list(set(np.arange(cost_matrix.shape[0])) - set(matches[:, 0])) unmatched_b = list(set(np.arange(cost_matrix.shape[1])) - set(matches[:, 1])) return matches, unmatched_a, unmatched_b def iou_distance(atracks: list, btracks: list) -> np.ndarray: """ Compute cost based on Intersection over Union (IoU) between tracks. Args: atracks (list[STrack] | list[np.ndarray]): List of tracks 'a' or bounding boxes. btracks (list[STrack] | list[np.ndarray]): List of tracks 'b' or bounding boxes. Returns: (np.ndarray): Cost matrix computed based on IoU. """ if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray): atlbrs = atracks btlbrs = btracks else: atlbrs = [track.xywha if track.angle is not None else track.xyxy for track in atracks] btlbrs = [track.xywha if track.angle is not None else track.xyxy for track in btracks] ious = np.zeros((len(atlbrs), len(btlbrs)), dtype=np.float32) if len(atlbrs) and len(btlbrs): if len(atlbrs[0]) == 5 and len(btlbrs[0]) == 5: ious = batch_probiou( np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32), ).numpy() else: ious = bbox_ioa( np.ascontiguousarray(atlbrs, dtype=np.float32), np.ascontiguousarray(btlbrs, dtype=np.float32), iou=True, ) return 1 - ious # cost matrix def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -> np.ndarray: """ Compute distance between tracks and detections based on embeddings. Args: tracks (list[STrack]): List of tracks. detections (list[BaseTrack]): List of detections. metric (str, optional): Metric for distance computation. Defaults to 'cosine'. Returns: (np.ndarray): Cost matrix computed based on embeddings. """ cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32) if cost_matrix.size == 0: return cost_matrix det_features = np.asarray([track.curr_feat for track in detections], dtype=np.float32) # for i, track in enumerate(tracks): # cost_matrix[i, :] = np.maximum(0.0, cdist(track.smooth_feat.reshape(1,-1), det_features, metric)) track_features = np.asarray([track.smooth_feat for track in tracks], dtype=np.float32) cost_matrix = np.maximum(0.0, cdist(track_features, det_features, metric)) # Normalized features return cost_matrix def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray: """ Fuses cost matrix with detection scores to produce a single similarity matrix. Args: cost_matrix (np.ndarray): The matrix containing cost values for assignments. detections (list[BaseTrack]): List of detections with scores. Returns: (np.ndarray): Fused similarity matrix. """ if cost_matrix.size == 0: return cost_matrix iou_sim = 1 - cost_matrix det_scores = np.array([det.score for det in detections]) det_scores = np.expand_dims(det_scores, axis=0).repeat(cost_matrix.shape[0], axis=0) fuse_sim = iou_sim * det_scores return 1 - fuse_sim # fuse_cost