# Ultralytics YOLO 🚀, AGPL-3.0 license from ultralytics.utils import SETTINGS, TESTS_RUNNING from ultralytics.utils.torch_utils import model_info_for_loggers try: assert not TESTS_RUNNING # do not log pytest assert SETTINGS["wandb"] is True # verify integration is enabled import wandb as wb assert hasattr(wb, "__version__") # verify package is not directory _processed_plots = {} except (ImportError, AssertionError): wb = None def _custom_table(x, y, classes, title="Precision Recall Curve", x_title="Recall", y_title="Precision"): """ Create and log a custom metric visualization to wandb.plot.pr_curve. This function crafts a custom metric visualization that mimics the behavior of the default wandb precision-recall curve while allowing for enhanced customization. The visual metric is useful for monitoring model performance across different classes. Args: x (List): Values for the x-axis; expected to have length N. y (List): Corresponding values for the y-axis; also expected to have length N. classes (List): Labels identifying the class of each point; length N. title (str, optional): Title for the plot; defaults to 'Precision Recall Curve'. x_title (str, optional): Label for the x-axis; defaults to 'Recall'. y_title (str, optional): Label for the y-axis; defaults to 'Precision'. Returns: (wandb.Object): A wandb object suitable for logging, showcasing the crafted metric visualization. """ import pandas # scope for faster 'import ultralytics' df = pandas.DataFrame({"class": classes, "y": y, "x": x}).round(3) fields = {"x": "x", "y": "y", "class": "class"} string_fields = {"title": title, "x-axis-title": x_title, "y-axis-title": y_title} return wb.plot_table( "wandb/area-under-curve/v0", wb.Table(dataframe=df), fields=fields, string_fields=string_fields ) def _plot_curve( x, y, names=None, id="precision-recall", title="Precision Recall Curve", x_title="Recall", y_title="Precision", num_x=100, only_mean=False, ): """ Log a metric curve visualization. This function generates a metric curve based on input data and logs the visualization to wandb. The curve can represent aggregated data (mean) or individual class data, depending on the 'only_mean' flag. Args: x (np.ndarray): Data points for the x-axis with length N. y (np.ndarray): Corresponding data points for the y-axis with shape CxN, where C is the number of classes. names (list, optional): Names of the classes corresponding to the y-axis data; length C. Defaults to []. id (str, optional): Unique identifier for the logged data in wandb. Defaults to 'precision-recall'. title (str, optional): Title for the visualization plot. Defaults to 'Precision Recall Curve'. x_title (str, optional): Label for the x-axis. Defaults to 'Recall'. y_title (str, optional): Label for the y-axis. Defaults to 'Precision'. num_x (int, optional): Number of interpolated data points for visualization. Defaults to 100. only_mean (bool, optional): Flag to indicate if only the mean curve should be plotted. Defaults to True. Note: The function leverages the '_custom_table' function to generate the actual visualization. """ import numpy as np # Create new x if names is None: names = [] x_new = np.linspace(x[0], x[-1], num_x).round(5) # Create arrays for logging x_log = x_new.tolist() y_log = np.interp(x_new, x, np.mean(y, axis=0)).round(3).tolist() if only_mean: table = wb.Table(data=list(zip(x_log, y_log)), columns=[x_title, y_title]) wb.run.log({title: wb.plot.line(table, x_title, y_title, title=title)}) else: classes = ["mean"] * len(x_log) for i, yi in enumerate(y): x_log.extend(x_new) # add new x y_log.extend(np.interp(x_new, x, yi)) # interpolate y to new x classes.extend([names[i]] * len(x_new)) # add class names wb.log({id: _custom_table(x_log, y_log, classes, title, x_title, y_title)}, commit=False) def _log_plots(plots, step): """Logs plots from the input dictionary if they haven't been logged already at the specified step.""" for name, params in plots.copy().items(): # shallow copy to prevent plots dict changing during iteration timestamp = params["timestamp"] if _processed_plots.get(name) != timestamp: wb.run.log({name.stem: wb.Image(str(name))}, step=step) _processed_plots[name] = timestamp def on_pretrain_routine_start(trainer): """Initiate and start project if module is present.""" wb.run or wb.init(project=trainer.args.project or "YOLOv8", name=trainer.args.name, config=vars(trainer.args)) def on_fit_epoch_end(trainer): """Logs training metrics and model information at the end of an epoch.""" wb.run.log(trainer.metrics, step=trainer.epoch + 1) _log_plots(trainer.plots, step=trainer.epoch + 1) _log_plots(trainer.validator.plots, step=trainer.epoch + 1) if trainer.epoch == 0: wb.run.log(model_info_for_loggers(trainer), step=trainer.epoch + 1) def on_train_epoch_end(trainer): """Log metrics and save images at the end of each training epoch.""" wb.run.log(trainer.label_loss_items(trainer.tloss, prefix="train"), step=trainer.epoch + 1) wb.run.log(trainer.lr, step=trainer.epoch + 1) if trainer.epoch == 1: _log_plots(trainer.plots, step=trainer.epoch + 1) def on_train_end(trainer): """Save the best model as an artifact at end of training.""" _log_plots(trainer.validator.plots, step=trainer.epoch + 1) _log_plots(trainer.plots, step=trainer.epoch + 1) art = wb.Artifact(type="model", name=f"run_{wb.run.id}_model") if trainer.best.exists(): art.add_file(trainer.best) wb.run.log_artifact(art, aliases=["best"]) for curve_name, curve_values in zip(trainer.validator.metrics.curves, trainer.validator.metrics.curves_results): x, y, x_title, y_title = curve_values _plot_curve( x, y, names=list(trainer.validator.metrics.names.values()), id=f"curves/{curve_name}", title=curve_name, x_title=x_title, y_title=y_title, ) wb.run.finish() # required or run continues on dashboard callbacks = ( { "on_pretrain_routine_start": on_pretrain_routine_start, "on_train_epoch_end": on_train_epoch_end, "on_fit_epoch_end": on_fit_epoch_end, "on_train_end": on_train_end, } if wb else {} )