# Ultralytics YOLO 🚀, AGPL-3.0 license import gc import math import os import random import time from contextlib import contextmanager from copy import deepcopy from datetime import datetime from pathlib import Path from typing import Union import numpy as np import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from ultralytics.utils import ( DEFAULT_CFG_DICT, DEFAULT_CFG_KEYS, LOGGER, NUM_THREADS, PYTHON_VERSION, TORCHVISION_VERSION, __version__, colorstr, ) from ultralytics.utils.checks import check_version try: import thop except ImportError: thop = None # Version checks (all default to version>=min_version) TORCH_1_9 = check_version(torch.__version__, "1.9.0") TORCH_1_13 = check_version(torch.__version__, "1.13.0") TORCH_2_0 = check_version(torch.__version__, "2.0.0") TORCHVISION_0_10 = check_version(TORCHVISION_VERSION, "0.10.0") TORCHVISION_0_11 = check_version(TORCHVISION_VERSION, "0.11.0") TORCHVISION_0_13 = check_version(TORCHVISION_VERSION, "0.13.0") TORCHVISION_0_18 = check_version(TORCHVISION_VERSION, "0.18.0") @contextmanager def torch_distributed_zero_first(local_rank: int): """Ensures all processes in distributed training wait for the local master (rank 0) to complete a task first.""" initialized = dist.is_available() and dist.is_initialized() if initialized and local_rank not in {-1, 0}: dist.barrier(device_ids=[local_rank]) yield if initialized and local_rank == 0: dist.barrier(device_ids=[0]) def smart_inference_mode(): """Applies torch.inference_mode() decorator if torch>=1.9.0 else torch.no_grad() decorator.""" def decorate(fn): """Applies appropriate torch decorator for inference mode based on torch version.""" if TORCH_1_9 and torch.is_inference_mode_enabled(): return fn # already in inference_mode, act as a pass-through else: return (torch.inference_mode if TORCH_1_9 else torch.no_grad)()(fn) return decorate def get_cpu_info(): """Return a string with system CPU information, i.e. 'Apple M2'.""" import cpuinfo # pip install py-cpuinfo k = "brand_raw", "hardware_raw", "arch_string_raw" # info keys sorted by preference (not all keys always available) info = cpuinfo.get_cpu_info() # info dict string = info.get(k[0] if k[0] in info else k[1] if k[1] in info else k[2], "unknown") return string.replace("(R)", "").replace("CPU ", "").replace("@ ", "") def select_device(device="", batch=0, newline=False, verbose=True): """ Selects the appropriate PyTorch device based on the provided arguments. The function takes a string specifying the device or a torch.device object and returns a torch.device object representing the selected device. The function also validates the number of available devices and raises an exception if the requested device(s) are not available. Args: device (str | torch.device, optional): Device string or torch.device object. Options are 'None', 'cpu', or 'cuda', or '0' or '0,1,2,3'. Defaults to an empty string, which auto-selects the first available GPU, or CPU if no GPU is available. batch (int, optional): Batch size being used in your model. Defaults to 0. newline (bool, optional): If True, adds a newline at the end of the log string. Defaults to False. verbose (bool, optional): If True, logs the device information. Defaults to True. Returns: (torch.device): Selected device. Raises: ValueError: If the specified device is not available or if the batch size is not a multiple of the number of devices when using multiple GPUs. Examples: >>> select_device('cuda:0') device(type='cuda', index=0) >>> select_device('cpu') device(type='cpu') Note: Sets the 'CUDA_VISIBLE_DEVICES' environment variable for specifying which GPUs to use. """ if isinstance(device, torch.device): return device s = f"Ultralytics YOLOv{__version__} 🚀 Python-{PYTHON_VERSION} torch-{torch.__version__} " device = str(device).lower() for remove in "cuda:", "none", "(", ")", "[", "]", "'", " ": device = device.replace(remove, "") # to string, 'cuda:0' -> '0' and '(0, 1)' -> '0,1' cpu = device == "cpu" mps = device in {"mps", "mps:0"} # Apple Metal Performance Shaders (MPS) if cpu or mps: os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # force torch.cuda.is_available() = False elif device: # non-cpu device requested if device == "cuda": device = "0" visible = os.environ.get("CUDA_VISIBLE_DEVICES", None) os.environ["CUDA_VISIBLE_DEVICES"] = device # set environment variable - must be before assert is_available() if not (torch.cuda.is_available() and torch.cuda.device_count() >= len(device.split(","))): LOGGER.info(s) install = ( "See https://pytorch.org/get-started/locally/ for up-to-date torch install instructions if no " "CUDA devices are seen by torch.\n" if torch.cuda.device_count() == 0 else "" ) raise ValueError( f"Invalid CUDA 'device={device}' requested." f" Use 'device=cpu' or pass valid CUDA device(s) if available," f" i.e. 'device=0' or 'device=0,1,2,3' for Multi-GPU.\n" f"\ntorch.cuda.is_available(): {torch.cuda.is_available()}" f"\ntorch.cuda.device_count(): {torch.cuda.device_count()}" f"\nos.environ['CUDA_VISIBLE_DEVICES']: {visible}\n" f"{install}" ) if not cpu and not mps and torch.cuda.is_available(): # prefer GPU if available devices = device.split(",") if device else "0" # range(torch.cuda.device_count()) # i.e. 0,1,6,7 n = len(devices) # device count if n > 1: # multi-GPU if batch < 1: raise ValueError( "AutoBatch with batch<1 not supported for Multi-GPU training, " "please specify a valid batch size, i.e. batch=16." ) if batch >= 0 and batch % n != 0: # check batch_size is divisible by device_count raise ValueError( f"'batch={batch}' must be a multiple of GPU count {n}. Try 'batch={batch // n * n}' or " f"'batch={batch // n * n + n}', the nearest batch sizes evenly divisible by {n}." ) space = " " * (len(s) + 1) for i, d in enumerate(devices): p = torch.cuda.get_device_properties(i) s += f"{'' if i == 0 else space}CUDA:{d} ({p.name}, {p.total_memory / (1 << 20):.0f}MiB)\n" # bytes to MB arg = "cuda:0" elif mps and TORCH_2_0 and torch.backends.mps.is_available(): # Prefer MPS if available s += f"MPS ({get_cpu_info()})\n" arg = "mps" else: # revert to CPU s += f"CPU ({get_cpu_info()})\n" arg = "cpu" if arg in {"cpu", "mps"}: torch.set_num_threads(NUM_THREADS) # reset OMP_NUM_THREADS for cpu training if verbose: LOGGER.info(s if newline else s.rstrip()) return torch.device(arg) def time_sync(): """PyTorch-accurate time.""" if torch.cuda.is_available(): torch.cuda.synchronize() return time.time() def fuse_conv_and_bn(conv, bn): """Fuse Conv2d() and BatchNorm2d() layers https://tehnokv.com/posts/fusing-batchnorm-and-conv/.""" fusedconv = ( nn.Conv2d( conv.in_channels, conv.out_channels, kernel_size=conv.kernel_size, stride=conv.stride, padding=conv.padding, dilation=conv.dilation, groups=conv.groups, bias=True, ) .requires_grad_(False) .to(conv.weight.device) ) # Prepare filters w_conv = conv.weight.clone().view(conv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape)) # Prepare spatial bias b_conv = torch.zeros(conv.weight.shape[0], device=conv.weight.device) if conv.bias is None else conv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fusedconv def fuse_deconv_and_bn(deconv, bn): """Fuse ConvTranspose2d() and BatchNorm2d() layers.""" fuseddconv = ( nn.ConvTranspose2d( deconv.in_channels, deconv.out_channels, kernel_size=deconv.kernel_size, stride=deconv.stride, padding=deconv.padding, output_padding=deconv.output_padding, dilation=deconv.dilation, groups=deconv.groups, bias=True, ) .requires_grad_(False) .to(deconv.weight.device) ) # Prepare filters w_deconv = deconv.weight.clone().view(deconv.out_channels, -1) w_bn = torch.diag(bn.weight.div(torch.sqrt(bn.eps + bn.running_var))) fuseddconv.weight.copy_(torch.mm(w_bn, w_deconv).view(fuseddconv.weight.shape)) # Prepare spatial bias b_conv = torch.zeros(deconv.weight.shape[1], device=deconv.weight.device) if deconv.bias is None else deconv.bias b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps)) fuseddconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn) return fuseddconv def model_info(model, detailed=False, verbose=True, imgsz=640): """ Model information. imgsz may be int or list, i.e. imgsz=640 or imgsz=[640, 320]. """ if not verbose: return n_p = get_num_params(model) # number of parameters n_g = get_num_gradients(model) # number of gradients n_l = len(list(model.modules())) # number of layers if detailed: LOGGER.info( f"{'layer':>5} {'name':>40} {'gradient':>9} {'parameters':>12} {'shape':>20} {'mu':>10} {'sigma':>10}" ) for i, (name, p) in enumerate(model.named_parameters()): name = name.replace("module_list.", "") LOGGER.info( "%5g %40s %9s %12g %20s %10.3g %10.3g %10s" % (i, name, p.requires_grad, p.numel(), list(p.shape), p.mean(), p.std(), p.dtype) ) flops = get_flops(model, imgsz) fused = " (fused)" if getattr(model, "is_fused", lambda: False)() else "" fs = f", {flops:.1f} GFLOPs" if flops else "" yaml_file = getattr(model, "yaml_file", "") or getattr(model, "yaml", {}).get("yaml_file", "") model_name = Path(yaml_file).stem.replace("yolo", "YOLO") or "Model" LOGGER.info(f"{model_name} summary{fused}: {n_l:,} layers, {n_p:,} parameters, {n_g:,} gradients{fs}") return n_l, n_p, n_g, flops def get_num_params(model): """Return the total number of parameters in a YOLO model.""" return sum(x.numel() for x in model.parameters()) def get_num_gradients(model): """Return the total number of parameters with gradients in a YOLO model.""" return sum(x.numel() for x in model.parameters() if x.requires_grad) def model_info_for_loggers(trainer): """ Return model info dict with useful model information. Example: YOLOv8n info for loggers ```python results = {'model/parameters': 3151904, 'model/GFLOPs': 8.746, 'model/speed_ONNX(ms)': 41.244, 'model/speed_TensorRT(ms)': 3.211, 'model/speed_PyTorch(ms)': 18.755} ``` """ if trainer.args.profile: # profile ONNX and TensorRT times from ultralytics.utils.benchmarks import ProfileModels results = ProfileModels([trainer.last], device=trainer.device).profile()[0] results.pop("model/name") else: # only return PyTorch times from most recent validation results = { "model/parameters": get_num_params(trainer.model), "model/GFLOPs": round(get_flops(trainer.model), 3), } results["model/speed_PyTorch(ms)"] = round(trainer.validator.speed["inference"], 3) return results def get_flops(model, imgsz=640): """Return a YOLO model's FLOPs.""" if not thop: return 0.0 # if not installed return 0.0 GFLOPs try: model = de_parallel(model) p = next(model.parameters()) if not isinstance(imgsz, list): imgsz = [imgsz, imgsz] # expand if int/float try: # Use stride size for input tensor stride = max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32 # max stride im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format flops = thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # stride GFLOPs return flops * imgsz[0] / stride * imgsz[1] / stride # imgsz GFLOPs except Exception: # Use actual image size for input tensor (i.e. required for RTDETR models) im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format return thop.profile(deepcopy(model), inputs=[im], verbose=False)[0] / 1e9 * 2 # imgsz GFLOPs except Exception: return 0.0 def get_flops_with_torch_profiler(model, imgsz=640): """Compute model FLOPs (thop package alternative, but 2-10x slower unfortunately).""" if not TORCH_2_0: # torch profiler implemented in torch>=2.0 return 0.0 model = de_parallel(model) p = next(model.parameters()) if not isinstance(imgsz, list): imgsz = [imgsz, imgsz] # expand if int/float try: # Use stride size for input tensor stride = (max(int(model.stride.max()), 32) if hasattr(model, "stride") else 32) * 2 # max stride im = torch.empty((1, p.shape[1], stride, stride), device=p.device) # input image in BCHW format with torch.profiler.profile(with_flops=True) as prof: model(im) flops = sum(x.flops for x in prof.key_averages()) / 1e9 flops = flops * imgsz[0] / stride * imgsz[1] / stride # 640x640 GFLOPs except Exception: # Use actual image size for input tensor (i.e. required for RTDETR models) im = torch.empty((1, p.shape[1], *imgsz), device=p.device) # input image in BCHW format with torch.profiler.profile(with_flops=True) as prof: model(im) flops = sum(x.flops for x in prof.key_averages()) / 1e9 return flops def initialize_weights(model): """Initialize model weights to random values.""" for m in model.modules(): t = type(m) if t is nn.Conv2d: pass # nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif t is nn.BatchNorm2d: m.eps = 1e-3 m.momentum = 0.03 elif t in {nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU}: m.inplace = True def scale_img(img, ratio=1.0, same_shape=False, gs=32): """Scales and pads an image tensor of shape img(bs,3,y,x) based on given ratio and grid size gs, optionally retaining the original shape. """ if ratio == 1.0: return img h, w = img.shape[2:] s = (int(h * ratio), int(w * ratio)) # new size img = F.interpolate(img, size=s, mode="bilinear", align_corners=False) # resize if not same_shape: # pad/crop img h, w = (math.ceil(x * ratio / gs) * gs for x in (h, w)) return F.pad(img, [0, w - s[1], 0, h - s[0]], value=0.447) # value = imagenet mean def make_divisible(x, divisor): """Returns nearest x divisible by divisor.""" if isinstance(divisor, torch.Tensor): divisor = int(divisor.max()) # to int return math.ceil(x / divisor) * divisor def copy_attr(a, b, include=(), exclude=()): """Copies attributes from object 'b' to object 'a', with options to include/exclude certain attributes.""" for k, v in b.__dict__.items(): if (len(include) and k not in include) or k.startswith("_") or k in exclude: continue else: setattr(a, k, v) def get_latest_opset(): """Return the second-most recent ONNX opset version supported by this version of PyTorch, adjusted for maturity.""" if TORCH_1_13: # If the PyTorch>=1.13, dynamically compute the latest opset minus one using 'symbolic_opset' return max(int(k[14:]) for k in vars(torch.onnx) if "symbolic_opset" in k) - 1 # Otherwise for PyTorch<=1.12 return the corresponding predefined opset version = torch.onnx.producer_version.rsplit(".", 1)[0] # i.e. '2.3' return {"1.12": 15, "1.11": 14, "1.10": 13, "1.9": 12, "1.8": 12}.get(version, 12) def intersect_dicts(da, db, exclude=()): """Returns a dictionary of intersecting keys with matching shapes, excluding 'exclude' keys, using da values.""" return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape} def is_parallel(model): """Returns True if model is of type DP or DDP.""" return isinstance(model, (nn.parallel.DataParallel, nn.parallel.DistributedDataParallel)) def de_parallel(model): """De-parallelize a model: returns single-GPU model if model is of type DP or DDP.""" return model.module if is_parallel(model) else model def one_cycle(y1=0.0, y2=1.0, steps=100): """Returns a lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf.""" return lambda x: max((1 - math.cos(x * math.pi / steps)) / 2, 0) * (y2 - y1) + y1 def init_seeds(seed=0, deterministic=False): """Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html.""" random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe # torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287 if deterministic: if TORCH_2_0: torch.use_deterministic_algorithms(True, warn_only=True) # warn if deterministic is not possible torch.backends.cudnn.deterministic = True os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" os.environ["PYTHONHASHSEED"] = str(seed) else: LOGGER.warning("WARNING ⚠️ Upgrade to torch>=2.0.0 for deterministic training.") else: torch.use_deterministic_algorithms(False) torch.backends.cudnn.deterministic = False class ModelEMA: """ Updated Exponential Moving Average (EMA) from https://github.com/rwightman/pytorch-image-models. Keeps a moving average of everything in the model state_dict (parameters and buffers) For EMA details see https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage To disable EMA set the `enabled` attribute to `False`. """ def __init__(self, model, decay=0.9999, tau=2000, updates=0): """Initialize EMA for 'model' with given arguments.""" self.ema = deepcopy(de_parallel(model)).eval() # FP32 EMA self.updates = updates # number of EMA updates self.decay = lambda x: decay * (1 - math.exp(-x / tau)) # decay exponential ramp (to help early epochs) for p in self.ema.parameters(): p.requires_grad_(False) self.enabled = True def update(self, model): """Update EMA parameters.""" if self.enabled: self.updates += 1 d = self.decay(self.updates) msd = de_parallel(model).state_dict() # model state_dict for k, v in self.ema.state_dict().items(): if v.dtype.is_floating_point: # true for FP16 and FP32 v *= d v += (1 - d) * msd[k].detach() # assert v.dtype == msd[k].dtype == torch.float32, f'{k}: EMA {v.dtype}, model {msd[k].dtype}' def update_attr(self, model, include=(), exclude=("process_group", "reducer")): """Updates attributes and saves stripped model with optimizer removed.""" if self.enabled: copy_attr(self.ema, model, include, exclude) def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "") -> None: """ Strip optimizer from 'f' to finalize training, optionally save as 's'. Args: f (str): file path to model to strip the optimizer from. Default is 'best.pt'. s (str): file path to save the model with stripped optimizer to. If not provided, 'f' will be overwritten. Returns: None Example: ```python from pathlib import Path from ultralytics.utils.torch_utils import strip_optimizer for f in Path('path/to/model/checkpoints').rglob('*.pt'): strip_optimizer(f) ``` Note: Use `ultralytics.nn.torch_safe_load` for missing modules with `x = torch_safe_load(f)[0]` """ try: x = torch.load(f, map_location=torch.device("cpu")) assert isinstance(x, dict), "checkpoint is not a Python dictionary" assert "model" in x, "'model' missing from checkpoint" except Exception as e: LOGGER.warning(f"WARNING ⚠️ Skipping {f}, not a valid Ultralytics model: {e}") return updates = { "date": datetime.now().isoformat(), "version": __version__, "license": "AGPL-3.0 License (https://ultralytics.com/license)", "docs": "https://docs.ultralytics.com", } # Update model if x.get("ema"): x["model"] = x["ema"] # replace model with EMA if hasattr(x["model"], "args"): x["model"].args = dict(x["model"].args) # convert from IterableSimpleNamespace to dict if hasattr(x["model"], "criterion"): x["model"].criterion = None # strip loss criterion x["model"].half() # to FP16 for p in x["model"].parameters(): p.requires_grad = False # Update other keys args = {**DEFAULT_CFG_DICT, **x.get("train_args", {})} # combine args for k in "optimizer", "best_fitness", "ema", "updates": # keys x[k] = None x["epoch"] = -1 x["train_args"] = {k: v for k, v in args.items() if k in DEFAULT_CFG_KEYS} # strip non-default keys # x['model'].args = x['train_args'] # Save torch.save({**updates, **x}, s or f, use_dill=False) # combine dicts (prefer to the right) mb = os.path.getsize(s or f) / 1e6 # file size LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB") def convert_optimizer_state_dict_to_fp16(state_dict): """ Converts the state_dict of a given optimizer to FP16, focusing on the 'state' key for tensor conversions. This method aims to reduce storage size without altering 'param_groups' as they contain non-tensor data. """ for state in state_dict["state"].values(): for k, v in state.items(): if k != "step" and isinstance(v, torch.Tensor) and v.dtype is torch.float32: state[k] = v.half() return state_dict def profile(input, ops, n=10, device=None): """ Ultralytics speed, memory and FLOPs profiler. Example: ```python from ultralytics.utils.torch_utils import profile input = torch.randn(16, 3, 640, 640) m1 = lambda x: x * torch.sigmoid(x) m2 = nn.SiLU() profile(input, [m1, m2], n=100) # profile over 100 iterations ``` """ results = [] if not isinstance(device, torch.device): device = select_device(device) LOGGER.info( f"{'Params':>12s}{'GFLOPs':>12s}{'GPU_mem (GB)':>14s}{'forward (ms)':>14s}{'backward (ms)':>14s}" f"{'input':>24s}{'output':>24s}" ) for x in input if isinstance(input, list) else [input]: x = x.to(device) x.requires_grad = True for m in ops if isinstance(ops, list) else [ops]: m = m.to(device) if hasattr(m, "to") else m # device m = m.half() if hasattr(m, "half") and isinstance(x, torch.Tensor) and x.dtype is torch.float16 else m tf, tb, t = 0, 0, [0, 0, 0] # dt forward, backward try: flops = thop.profile(m, inputs=[x], verbose=False)[0] / 1e9 * 2 if thop else 0 # GFLOPs except Exception: flops = 0 try: for _ in range(n): t[0] = time_sync() y = m(x) t[1] = time_sync() try: (sum(yi.sum() for yi in y) if isinstance(y, list) else y).sum().backward() t[2] = time_sync() except Exception: # no backward method # print(e) # for debug t[2] = float("nan") tf += (t[1] - t[0]) * 1000 / n # ms per op forward tb += (t[2] - t[1]) * 1000 / n # ms per op backward mem = torch.cuda.memory_reserved() / 1e9 if torch.cuda.is_available() else 0 # (GB) s_in, s_out = (tuple(x.shape) if isinstance(x, torch.Tensor) else "list" for x in (x, y)) # shapes p = sum(x.numel() for x in m.parameters()) if isinstance(m, nn.Module) else 0 # parameters LOGGER.info(f"{p:12}{flops:12.4g}{mem:>14.3f}{tf:14.4g}{tb:14.4g}{str(s_in):>24s}{str(s_out):>24s}") results.append([p, flops, mem, tf, tb, s_in, s_out]) except Exception as e: LOGGER.info(e) results.append(None) gc.collect() # attempt to free unused memory torch.cuda.empty_cache() return results class EarlyStopping: """Early stopping class that stops training when a specified number of epochs have passed without improvement.""" def __init__(self, patience=50): """ Initialize early stopping object. Args: patience (int, optional): Number of epochs to wait after fitness stops improving before stopping. """ self.best_fitness = 0.0 # i.e. mAP self.best_epoch = 0 self.patience = patience or float("inf") # epochs to wait after fitness stops improving to stop self.possible_stop = False # possible stop may occur next epoch def __call__(self, epoch, fitness): """ Check whether to stop training. Args: epoch (int): Current epoch of training fitness (float): Fitness value of current epoch Returns: (bool): True if training should stop, False otherwise """ if fitness is None: # check if fitness=None (happens when val=False) return False if fitness >= self.best_fitness: # >= 0 to allow for early zero-fitness stage of training self.best_epoch = epoch self.best_fitness = fitness delta = epoch - self.best_epoch # epochs without improvement self.possible_stop = delta >= (self.patience - 1) # possible stop may occur next epoch stop = delta >= self.patience # stop training if patience exceeded if stop: prefix = colorstr("EarlyStopping: ") LOGGER.info( f"{prefix}Training stopped early as no improvement observed in last {self.patience} epochs. " f"Best results observed at epoch {self.best_epoch}, best model saved as best.pt.\n" f"To update EarlyStopping(patience={self.patience}) pass a new patience value, " f"i.e. `patience=300` or use `patience=0` to disable EarlyStopping." ) return stop