43 lines
1.5 KiB
YAML
43 lines
1.5 KiB
YAML
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
# RT-DETR-ResNet101 object detection model with P3-P5 outputs.
|
|
|
|
# Parameters
|
|
nc: 80 # number of classes
|
|
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
|
|
# [depth, width, max_channels]
|
|
l: [1.00, 1.00, 1024]
|
|
|
|
backbone:
|
|
# [from, repeats, module, args]
|
|
- [-1, 1, ResNetLayer, [3, 64, 1, True, 1]] # 0
|
|
- [-1, 1, ResNetLayer, [64, 64, 1, False, 3]] # 1
|
|
- [-1, 1, ResNetLayer, [256, 128, 2, False, 4]] # 2
|
|
- [-1, 1, ResNetLayer, [512, 256, 2, False, 23]] # 3
|
|
- [-1, 1, ResNetLayer, [1024, 512, 2, False, 3]] # 4
|
|
|
|
head:
|
|
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
|
|
- [-1, 1, AIFI, [1024, 8]]
|
|
- [-1, 1, Conv, [256, 1, 1]] # 7
|
|
|
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
|
|
- [[-2, -1], 1, Concat, [1]]
|
|
- [-1, 3, RepC3, [256]] # 11
|
|
- [-1, 1, Conv, [256, 1, 1]] # 12
|
|
|
|
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
|
|
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
|
|
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
|
|
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
|
|
|
|
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
|
|
- [[-1, 12], 1, Concat, [1]] # cat Y4
|
|
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
|
|
|
|
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
|
|
- [[-1, 7], 1, Concat, [1]] # cat Y5
|
|
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
|
|
|
|
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
|