54 lines
2.0 KiB
Python
54 lines
2.0 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import torch
|
|
|
|
from ultralytics.engine.results import Results
|
|
from ultralytics.models.yolo.detect.predict import DetectionPredictor
|
|
from ultralytics.utils import DEFAULT_CFG, ops
|
|
|
|
|
|
class OBBPredictor(DetectionPredictor):
|
|
"""
|
|
A class extending the DetectionPredictor class for prediction based on an Oriented Bounding Box (OBB) model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.utils import ASSETS
|
|
from ultralytics.models.yolo.obb import OBBPredictor
|
|
|
|
args = dict(model='yolov8n-obb.pt', source=ASSETS)
|
|
predictor = OBBPredictor(overrides=args)
|
|
predictor.predict_cli()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
"""Initializes OBBPredictor with optional model and data configuration overrides."""
|
|
super().__init__(cfg, overrides, _callbacks)
|
|
self.args.task = "obb"
|
|
|
|
def postprocess(self, preds, img, orig_imgs):
|
|
"""Post-processes predictions and returns a list of Results objects."""
|
|
preds = ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
agnostic=self.args.agnostic_nms,
|
|
max_det=self.args.max_det,
|
|
nc=len(self.model.names),
|
|
classes=self.args.classes,
|
|
rotated=True,
|
|
)
|
|
|
|
if not isinstance(orig_imgs, list): # input images are a torch.Tensor, not a list
|
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
|
|
|
|
results = []
|
|
for pred, orig_img, img_path in zip(preds, orig_imgs, self.batch[0]):
|
|
rboxes = ops.regularize_rboxes(torch.cat([pred[:, :4], pred[:, -1:]], dim=-1))
|
|
rboxes[:, :4] = ops.scale_boxes(img.shape[2:], rboxes[:, :4], orig_img.shape, xywh=True)
|
|
# xywh, r, conf, cls
|
|
obb = torch.cat([rboxes, pred[:, 4:6]], dim=-1)
|
|
results.append(Results(orig_img, path=img_path, names=self.model.names, obb=obb))
|
|
return results
|