204 lines
9.1 KiB
Python
204 lines
9.1 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
from ultralytics.utils import LOGGER, ops
|
|
from ultralytics.utils.metrics import OBBMetrics, batch_probiou
|
|
from ultralytics.utils.plotting import output_to_rotated_target, plot_images
|
|
|
|
|
|
class OBBValidator(DetectionValidator):
|
|
"""
|
|
A class extending the DetectionValidator class for validation based on an Oriented Bounding Box (OBB) model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.yolo.obb import OBBValidator
|
|
|
|
args = dict(model='yolov8n-obb.pt', data='dota8.yaml')
|
|
validator = OBBValidator(args=args)
|
|
validator(model=args['model'])
|
|
```
|
|
"""
|
|
|
|
def __init__(self, dataloader=None, save_dir=None, pbar=None, args=None, _callbacks=None):
|
|
"""Initialize OBBValidator and set task to 'obb', metrics to OBBMetrics."""
|
|
super().__init__(dataloader, save_dir, pbar, args, _callbacks)
|
|
self.args.task = "obb"
|
|
self.metrics = OBBMetrics(save_dir=self.save_dir, plot=True, on_plot=self.on_plot)
|
|
|
|
def init_metrics(self, model):
|
|
"""Initialize evaluation metrics for YOLO."""
|
|
super().init_metrics(model)
|
|
val = self.data.get(self.args.split, "") # validation path
|
|
self.is_dota = isinstance(val, str) and "DOTA" in val # is COCO
|
|
|
|
def postprocess(self, preds):
|
|
"""Apply Non-maximum suppression to prediction outputs."""
|
|
return ops.non_max_suppression(
|
|
preds,
|
|
self.args.conf,
|
|
self.args.iou,
|
|
labels=self.lb,
|
|
nc=self.nc,
|
|
multi_label=True,
|
|
agnostic=self.args.single_cls,
|
|
max_det=self.args.max_det,
|
|
rotated=True,
|
|
)
|
|
|
|
def _process_batch(self, detections, gt_bboxes, gt_cls):
|
|
"""
|
|
Perform computation of the correct prediction matrix for a batch of detections and ground truth bounding boxes.
|
|
|
|
Args:
|
|
detections (torch.Tensor): A tensor of shape (N, 7) representing the detected bounding boxes and associated
|
|
data. Each detection is represented as (x1, y1, x2, y2, conf, class, angle).
|
|
gt_bboxes (torch.Tensor): A tensor of shape (M, 5) representing the ground truth bounding boxes. Each box is
|
|
represented as (x1, y1, x2, y2, angle).
|
|
gt_cls (torch.Tensor): A tensor of shape (M,) representing class labels for the ground truth bounding boxes.
|
|
|
|
Returns:
|
|
(torch.Tensor): The correct prediction matrix with shape (N, 10), which includes 10 IoU (Intersection over
|
|
Union) levels for each detection, indicating the accuracy of predictions compared to the ground truth.
|
|
|
|
Example:
|
|
```python
|
|
detections = torch.rand(100, 7) # 100 sample detections
|
|
gt_bboxes = torch.rand(50, 5) # 50 sample ground truth boxes
|
|
gt_cls = torch.randint(0, 5, (50,)) # 50 ground truth class labels
|
|
correct_matrix = OBBValidator._process_batch(detections, gt_bboxes, gt_cls)
|
|
```
|
|
|
|
Note:
|
|
This method relies on `batch_probiou` to calculate IoU between detections and ground truth bounding boxes.
|
|
"""
|
|
iou = batch_probiou(gt_bboxes, torch.cat([detections[:, :4], detections[:, -1:]], dim=-1))
|
|
return self.match_predictions(detections[:, 5], gt_cls, iou)
|
|
|
|
def _prepare_batch(self, si, batch):
|
|
"""Prepares and returns a batch for OBB validation."""
|
|
idx = batch["batch_idx"] == si
|
|
cls = batch["cls"][idx].squeeze(-1)
|
|
bbox = batch["bboxes"][idx]
|
|
ori_shape = batch["ori_shape"][si]
|
|
imgsz = batch["img"].shape[2:]
|
|
ratio_pad = batch["ratio_pad"][si]
|
|
if len(cls):
|
|
bbox[..., :4].mul_(torch.tensor(imgsz, device=self.device)[[1, 0, 1, 0]]) # target boxes
|
|
ops.scale_boxes(imgsz, bbox, ori_shape, ratio_pad=ratio_pad, xywh=True) # native-space labels
|
|
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
|
|
|
|
def _prepare_pred(self, pred, pbatch):
|
|
"""Prepares and returns a batch for OBB validation with scaled and padded bounding boxes."""
|
|
predn = pred.clone()
|
|
ops.scale_boxes(
|
|
pbatch["imgsz"], predn[:, :4], pbatch["ori_shape"], ratio_pad=pbatch["ratio_pad"], xywh=True
|
|
) # native-space pred
|
|
return predn
|
|
|
|
def plot_predictions(self, batch, preds, ni):
|
|
"""Plots predicted bounding boxes on input images and saves the result."""
|
|
plot_images(
|
|
batch["img"],
|
|
*output_to_rotated_target(preds, max_det=self.args.max_det),
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"val_batch{ni}_pred.jpg",
|
|
names=self.names,
|
|
on_plot=self.on_plot,
|
|
) # pred
|
|
|
|
def pred_to_json(self, predn, filename):
|
|
"""Serialize YOLO predictions to COCO json format."""
|
|
stem = Path(filename).stem
|
|
image_id = int(stem) if stem.isnumeric() else stem
|
|
rbox = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
|
|
poly = ops.xywhr2xyxyxyxy(rbox).view(-1, 8)
|
|
for i, (r, b) in enumerate(zip(rbox.tolist(), poly.tolist())):
|
|
self.jdict.append(
|
|
{
|
|
"image_id": image_id,
|
|
"category_id": self.class_map[int(predn[i, 5].item())],
|
|
"score": round(predn[i, 4].item(), 5),
|
|
"rbox": [round(x, 3) for x in r],
|
|
"poly": [round(x, 3) for x in b],
|
|
}
|
|
)
|
|
|
|
def save_one_txt(self, predn, save_conf, shape, file):
|
|
"""Save YOLO detections to a txt file in normalized coordinates in a specific format."""
|
|
import numpy as np
|
|
|
|
from ultralytics.engine.results import Results
|
|
|
|
rboxes = torch.cat([predn[:, :4], predn[:, -1:]], dim=-1)
|
|
# xywh, r, conf, cls
|
|
obb = torch.cat([rboxes, predn[:, 4:6]], dim=-1)
|
|
Results(
|
|
np.zeros((shape[0], shape[1]), dtype=np.uint8),
|
|
path=None,
|
|
names=self.names,
|
|
obb=obb,
|
|
).save_txt(file, save_conf=save_conf)
|
|
|
|
def eval_json(self, stats):
|
|
"""Evaluates YOLO output in JSON format and returns performance statistics."""
|
|
if self.args.save_json and self.is_dota and len(self.jdict):
|
|
import json
|
|
import re
|
|
from collections import defaultdict
|
|
|
|
pred_json = self.save_dir / "predictions.json" # predictions
|
|
pred_txt = self.save_dir / "predictions_txt" # predictions
|
|
pred_txt.mkdir(parents=True, exist_ok=True)
|
|
data = json.load(open(pred_json))
|
|
# Save split results
|
|
LOGGER.info(f"Saving predictions with DOTA format to {pred_txt}...")
|
|
for d in data:
|
|
image_id = d["image_id"]
|
|
score = d["score"]
|
|
classname = self.names[d["category_id"]].replace(" ", "-")
|
|
p = d["poly"]
|
|
|
|
with open(f'{pred_txt / f"Task1_{classname}"}.txt', "a") as f:
|
|
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
|
|
# Save merged results, this could result slightly lower map than using official merging script,
|
|
# because of the probiou calculation.
|
|
pred_merged_txt = self.save_dir / "predictions_merged_txt" # predictions
|
|
pred_merged_txt.mkdir(parents=True, exist_ok=True)
|
|
merged_results = defaultdict(list)
|
|
LOGGER.info(f"Saving merged predictions with DOTA format to {pred_merged_txt}...")
|
|
for d in data:
|
|
image_id = d["image_id"].split("__")[0]
|
|
pattern = re.compile(r"\d+___\d+")
|
|
x, y = (int(c) for c in re.findall(pattern, d["image_id"])[0].split("___"))
|
|
bbox, score, cls = d["rbox"], d["score"], d["category_id"]
|
|
bbox[0] += x
|
|
bbox[1] += y
|
|
bbox.extend([score, cls])
|
|
merged_results[image_id].append(bbox)
|
|
for image_id, bbox in merged_results.items():
|
|
bbox = torch.tensor(bbox)
|
|
max_wh = torch.max(bbox[:, :2]).item() * 2
|
|
c = bbox[:, 6:7] * max_wh # classes
|
|
scores = bbox[:, 5] # scores
|
|
b = bbox[:, :5].clone()
|
|
b[:, :2] += c
|
|
# 0.3 could get results close to the ones from official merging script, even slightly better.
|
|
i = ops.nms_rotated(b, scores, 0.3)
|
|
bbox = bbox[i]
|
|
|
|
b = ops.xywhr2xyxyxyxy(bbox[:, :5]).view(-1, 8)
|
|
for x in torch.cat([b, bbox[:, 5:7]], dim=-1).tolist():
|
|
classname = self.names[int(x[-1])].replace(" ", "-")
|
|
p = [round(i, 3) for i in x[:-2]] # poly
|
|
score = round(x[-2], 3)
|
|
|
|
with open(f'{pred_merged_txt / f"Task1_{classname}"}.txt', "a") as f:
|
|
f.writelines(f"{image_id} {score} {p[0]} {p[1]} {p[2]} {p[3]} {p[4]} {p[5]} {p[6]} {p[7]}\n")
|
|
|
|
return stats
|