63 lines
2.2 KiB
Python
63 lines
2.2 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from copy import copy
|
|
|
|
from ultralytics.models import yolo
|
|
from ultralytics.nn.tasks import SegmentationModel
|
|
from ultralytics.utils import DEFAULT_CFG, RANK
|
|
from ultralytics.utils.plotting import plot_images, plot_results
|
|
|
|
|
|
class SegmentationTrainer(yolo.detect.DetectionTrainer):
|
|
"""
|
|
A class extending the DetectionTrainer class for training based on a segmentation model.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.yolo.segment import SegmentationTrainer
|
|
|
|
args = dict(model='yolov8n-seg.pt', data='coco8-seg.yaml', epochs=3)
|
|
trainer = SegmentationTrainer(overrides=args)
|
|
trainer.train()
|
|
```
|
|
"""
|
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
"""Initialize a SegmentationTrainer object with given arguments."""
|
|
if overrides is None:
|
|
overrides = {}
|
|
overrides["task"] = "segment"
|
|
super().__init__(cfg, overrides, _callbacks)
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
"""Return SegmentationModel initialized with specified config and weights."""
|
|
model = SegmentationModel(cfg, ch=3, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
|
if weights:
|
|
model.load(weights)
|
|
|
|
return model
|
|
|
|
def get_validator(self):
|
|
"""Return an instance of SegmentationValidator for validation of YOLO model."""
|
|
self.loss_names = "box_loss", "seg_loss", "cls_loss", "dfl_loss"
|
|
return yolo.segment.SegmentationValidator(
|
|
self.test_loader, save_dir=self.save_dir, args=copy(self.args), _callbacks=self.callbacks
|
|
)
|
|
|
|
def plot_training_samples(self, batch, ni):
|
|
"""Creates a plot of training sample images with labels and box coordinates."""
|
|
plot_images(
|
|
batch["img"],
|
|
batch["batch_idx"],
|
|
batch["cls"].squeeze(-1),
|
|
batch["bboxes"],
|
|
masks=batch["masks"],
|
|
paths=batch["im_file"],
|
|
fname=self.save_dir / f"train_batch{ni}.jpg",
|
|
on_plot=self.on_plot,
|
|
)
|
|
|
|
def plot_metrics(self):
|
|
"""Plots training/val metrics."""
|
|
plot_results(file=self.csv, segment=True, on_plot=self.on_plot) # save results.png
|