364 lines
13 KiB
Python
364 lines
13 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import copy
|
|
|
|
import cv2
|
|
import numpy as np
|
|
|
|
from ultralytics.utils import LOGGER
|
|
|
|
|
|
class GMC:
|
|
"""
|
|
Generalized Motion Compensation (GMC) class for tracking and object detection in video frames.
|
|
|
|
This class provides methods for tracking and detecting objects based on several tracking algorithms including ORB,
|
|
SIFT, ECC, and Sparse Optical Flow. It also supports downscaling of frames for computational efficiency.
|
|
|
|
Attributes:
|
|
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
|
downscale (int): Factor by which to downscale the frames for processing.
|
|
prevFrame (np.ndarray): Stores the previous frame for tracking.
|
|
prevKeyPoints (list): Stores the keypoints from the previous frame.
|
|
prevDescriptors (np.ndarray): Stores the descriptors from the previous frame.
|
|
initializedFirstFrame (bool): Flag to indicate if the first frame has been processed.
|
|
|
|
Methods:
|
|
__init__(self, method='sparseOptFlow', downscale=2): Initializes a GMC object with the specified method
|
|
and downscale factor.
|
|
apply(self, raw_frame, detections=None): Applies the chosen method to a raw frame and optionally uses
|
|
provided detections.
|
|
applyEcc(self, raw_frame, detections=None): Applies the ECC algorithm to a raw frame.
|
|
applyFeatures(self, raw_frame, detections=None): Applies feature-based methods like ORB or SIFT to a raw frame.
|
|
applySparseOptFlow(self, raw_frame, detections=None): Applies the Sparse Optical Flow method to a raw frame.
|
|
"""
|
|
|
|
def __init__(self, method: str = "sparseOptFlow", downscale: int = 2) -> None:
|
|
"""
|
|
Initialize a video tracker with specified parameters.
|
|
|
|
Args:
|
|
method (str): The method used for tracking. Options include 'orb', 'sift', 'ecc', 'sparseOptFlow', 'none'.
|
|
downscale (int): Downscale factor for processing frames.
|
|
"""
|
|
super().__init__()
|
|
|
|
self.method = method
|
|
self.downscale = max(1, downscale)
|
|
|
|
if self.method == "orb":
|
|
self.detector = cv2.FastFeatureDetector_create(20)
|
|
self.extractor = cv2.ORB_create()
|
|
self.matcher = cv2.BFMatcher(cv2.NORM_HAMMING)
|
|
|
|
elif self.method == "sift":
|
|
self.detector = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
self.extractor = cv2.SIFT_create(nOctaveLayers=3, contrastThreshold=0.02, edgeThreshold=20)
|
|
self.matcher = cv2.BFMatcher(cv2.NORM_L2)
|
|
|
|
elif self.method == "ecc":
|
|
number_of_iterations = 5000
|
|
termination_eps = 1e-6
|
|
self.warp_mode = cv2.MOTION_EUCLIDEAN
|
|
self.criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, number_of_iterations, termination_eps)
|
|
|
|
elif self.method == "sparseOptFlow":
|
|
self.feature_params = dict(
|
|
maxCorners=1000, qualityLevel=0.01, minDistance=1, blockSize=3, useHarrisDetector=False, k=0.04
|
|
)
|
|
|
|
elif self.method in {"none", "None", None}:
|
|
self.method = None
|
|
else:
|
|
raise ValueError(f"Error: Unknown GMC method:{method}")
|
|
|
|
self.prevFrame = None
|
|
self.prevKeyPoints = None
|
|
self.prevDescriptors = None
|
|
self.initializedFirstFrame = False
|
|
|
|
def apply(self, raw_frame: np.array, detections: list = None) -> np.array:
|
|
"""
|
|
Apply object detection on a raw frame using specified method.
|
|
|
|
Args:
|
|
raw_frame (np.ndarray): The raw frame to be processed.
|
|
detections (list): List of detections to be used in the processing.
|
|
|
|
Returns:
|
|
(np.ndarray): Processed frame.
|
|
|
|
Examples:
|
|
>>> gmc = GMC()
|
|
>>> gmc.apply(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
array([[1, 2, 3],
|
|
[4, 5, 6]])
|
|
"""
|
|
if self.method in {"orb", "sift"}:
|
|
return self.applyFeatures(raw_frame, detections)
|
|
elif self.method == "ecc":
|
|
return self.applyEcc(raw_frame)
|
|
elif self.method == "sparseOptFlow":
|
|
return self.applySparseOptFlow(raw_frame)
|
|
else:
|
|
return np.eye(2, 3)
|
|
|
|
def applyEcc(self, raw_frame: np.array) -> np.array:
|
|
"""
|
|
Apply ECC algorithm to a raw frame.
|
|
|
|
Args:
|
|
raw_frame (np.ndarray): The raw frame to be processed.
|
|
|
|
Returns:
|
|
(np.ndarray): Processed frame.
|
|
|
|
Examples:
|
|
>>> gmc = GMC()
|
|
>>> gmc.applyEcc(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
array([[1, 2, 3],
|
|
[4, 5, 6]])
|
|
"""
|
|
height, width, _ = raw_frame.shape
|
|
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
H = np.eye(2, 3, dtype=np.float32)
|
|
|
|
# Downscale image
|
|
if self.downscale > 1.0:
|
|
frame = cv2.GaussianBlur(frame, (3, 3), 1.5)
|
|
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
width = width // self.downscale
|
|
height = height // self.downscale
|
|
|
|
# Handle first frame
|
|
if not self.initializedFirstFrame:
|
|
# Initialize data
|
|
self.prevFrame = frame.copy()
|
|
|
|
# Initialization done
|
|
self.initializedFirstFrame = True
|
|
|
|
return H
|
|
|
|
# Run the ECC algorithm. The results are stored in warp_matrix.
|
|
# (cc, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria)
|
|
try:
|
|
(_, H) = cv2.findTransformECC(self.prevFrame, frame, H, self.warp_mode, self.criteria, None, 1)
|
|
except Exception as e:
|
|
LOGGER.warning(f"WARNING: find transform failed. Set warp as identity {e}")
|
|
|
|
return H
|
|
|
|
def applyFeatures(self, raw_frame: np.array, detections: list = None) -> np.array:
|
|
"""
|
|
Apply feature-based methods like ORB or SIFT to a raw frame.
|
|
|
|
Args:
|
|
raw_frame (np.ndarray): The raw frame to be processed.
|
|
detections (list): List of detections to be used in the processing.
|
|
|
|
Returns:
|
|
(np.ndarray): Processed frame.
|
|
|
|
Examples:
|
|
>>> gmc = GMC()
|
|
>>> gmc.applyFeatures(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
array([[1, 2, 3],
|
|
[4, 5, 6]])
|
|
"""
|
|
height, width, _ = raw_frame.shape
|
|
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
H = np.eye(2, 3)
|
|
|
|
# Downscale image
|
|
if self.downscale > 1.0:
|
|
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
width = width // self.downscale
|
|
height = height // self.downscale
|
|
|
|
# Find the keypoints
|
|
mask = np.zeros_like(frame)
|
|
mask[int(0.02 * height) : int(0.98 * height), int(0.02 * width) : int(0.98 * width)] = 255
|
|
if detections is not None:
|
|
for det in detections:
|
|
tlbr = (det[:4] / self.downscale).astype(np.int_)
|
|
mask[tlbr[1] : tlbr[3], tlbr[0] : tlbr[2]] = 0
|
|
|
|
keypoints = self.detector.detect(frame, mask)
|
|
|
|
# Compute the descriptors
|
|
keypoints, descriptors = self.extractor.compute(frame, keypoints)
|
|
|
|
# Handle first frame
|
|
if not self.initializedFirstFrame:
|
|
# Initialize data
|
|
self.prevFrame = frame.copy()
|
|
self.prevKeyPoints = copy.copy(keypoints)
|
|
self.prevDescriptors = copy.copy(descriptors)
|
|
|
|
# Initialization done
|
|
self.initializedFirstFrame = True
|
|
|
|
return H
|
|
|
|
# Match descriptors
|
|
knnMatches = self.matcher.knnMatch(self.prevDescriptors, descriptors, 2)
|
|
|
|
# Filter matches based on smallest spatial distance
|
|
matches = []
|
|
spatialDistances = []
|
|
|
|
maxSpatialDistance = 0.25 * np.array([width, height])
|
|
|
|
# Handle empty matches case
|
|
if len(knnMatches) == 0:
|
|
# Store to next iteration
|
|
self.prevFrame = frame.copy()
|
|
self.prevKeyPoints = copy.copy(keypoints)
|
|
self.prevDescriptors = copy.copy(descriptors)
|
|
|
|
return H
|
|
|
|
for m, n in knnMatches:
|
|
if m.distance < 0.9 * n.distance:
|
|
prevKeyPointLocation = self.prevKeyPoints[m.queryIdx].pt
|
|
currKeyPointLocation = keypoints[m.trainIdx].pt
|
|
|
|
spatialDistance = (
|
|
prevKeyPointLocation[0] - currKeyPointLocation[0],
|
|
prevKeyPointLocation[1] - currKeyPointLocation[1],
|
|
)
|
|
|
|
if (np.abs(spatialDistance[0]) < maxSpatialDistance[0]) and (
|
|
np.abs(spatialDistance[1]) < maxSpatialDistance[1]
|
|
):
|
|
spatialDistances.append(spatialDistance)
|
|
matches.append(m)
|
|
|
|
meanSpatialDistances = np.mean(spatialDistances, 0)
|
|
stdSpatialDistances = np.std(spatialDistances, 0)
|
|
|
|
inliers = (spatialDistances - meanSpatialDistances) < 2.5 * stdSpatialDistances
|
|
|
|
goodMatches = []
|
|
prevPoints = []
|
|
currPoints = []
|
|
for i in range(len(matches)):
|
|
if inliers[i, 0] and inliers[i, 1]:
|
|
goodMatches.append(matches[i])
|
|
prevPoints.append(self.prevKeyPoints[matches[i].queryIdx].pt)
|
|
currPoints.append(keypoints[matches[i].trainIdx].pt)
|
|
|
|
prevPoints = np.array(prevPoints)
|
|
currPoints = np.array(currPoints)
|
|
|
|
# Draw the keypoint matches on the output image
|
|
# if False:
|
|
# import matplotlib.pyplot as plt
|
|
# matches_img = np.hstack((self.prevFrame, frame))
|
|
# matches_img = cv2.cvtColor(matches_img, cv2.COLOR_GRAY2BGR)
|
|
# W = self.prevFrame.shape[1]
|
|
# for m in goodMatches:
|
|
# prev_pt = np.array(self.prevKeyPoints[m.queryIdx].pt, dtype=np.int_)
|
|
# curr_pt = np.array(keypoints[m.trainIdx].pt, dtype=np.int_)
|
|
# curr_pt[0] += W
|
|
# color = np.random.randint(0, 255, 3)
|
|
# color = (int(color[0]), int(color[1]), int(color[2]))
|
|
#
|
|
# matches_img = cv2.line(matches_img, prev_pt, curr_pt, tuple(color), 1, cv2.LINE_AA)
|
|
# matches_img = cv2.circle(matches_img, prev_pt, 2, tuple(color), -1)
|
|
# matches_img = cv2.circle(matches_img, curr_pt, 2, tuple(color), -1)
|
|
#
|
|
# plt.figure()
|
|
# plt.imshow(matches_img)
|
|
# plt.show()
|
|
|
|
# Find rigid matrix
|
|
if prevPoints.shape[0] > 4:
|
|
H, inliers = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
|
|
# Handle downscale
|
|
if self.downscale > 1.0:
|
|
H[0, 2] *= self.downscale
|
|
H[1, 2] *= self.downscale
|
|
else:
|
|
LOGGER.warning("WARNING: not enough matching points")
|
|
|
|
# Store to next iteration
|
|
self.prevFrame = frame.copy()
|
|
self.prevKeyPoints = copy.copy(keypoints)
|
|
self.prevDescriptors = copy.copy(descriptors)
|
|
|
|
return H
|
|
|
|
def applySparseOptFlow(self, raw_frame: np.array) -> np.array:
|
|
"""
|
|
Apply Sparse Optical Flow method to a raw frame.
|
|
|
|
Args:
|
|
raw_frame (np.ndarray): The raw frame to be processed.
|
|
|
|
Returns:
|
|
(np.ndarray): Processed frame.
|
|
|
|
Examples:
|
|
>>> gmc = GMC()
|
|
>>> gmc.applySparseOptFlow(np.array([[1, 2, 3], [4, 5, 6]]))
|
|
array([[1, 2, 3],
|
|
[4, 5, 6]])
|
|
"""
|
|
height, width, _ = raw_frame.shape
|
|
frame = cv2.cvtColor(raw_frame, cv2.COLOR_BGR2GRAY)
|
|
H = np.eye(2, 3)
|
|
|
|
# Downscale image
|
|
if self.downscale > 1.0:
|
|
frame = cv2.resize(frame, (width // self.downscale, height // self.downscale))
|
|
|
|
# Find the keypoints
|
|
keypoints = cv2.goodFeaturesToTrack(frame, mask=None, **self.feature_params)
|
|
|
|
# Handle first frame
|
|
if not self.initializedFirstFrame or self.prevKeyPoints is None:
|
|
self.prevFrame = frame.copy()
|
|
self.prevKeyPoints = copy.copy(keypoints)
|
|
self.initializedFirstFrame = True
|
|
return H
|
|
|
|
# Find correspondences
|
|
matchedKeypoints, status, _ = cv2.calcOpticalFlowPyrLK(self.prevFrame, frame, self.prevKeyPoints, None)
|
|
|
|
# Leave good correspondences only
|
|
prevPoints = []
|
|
currPoints = []
|
|
|
|
for i in range(len(status)):
|
|
if status[i]:
|
|
prevPoints.append(self.prevKeyPoints[i])
|
|
currPoints.append(matchedKeypoints[i])
|
|
|
|
prevPoints = np.array(prevPoints)
|
|
currPoints = np.array(currPoints)
|
|
|
|
# Find rigid matrix
|
|
if (prevPoints.shape[0] > 4) and (prevPoints.shape[0] == prevPoints.shape[0]):
|
|
H, _ = cv2.estimateAffinePartial2D(prevPoints, currPoints, cv2.RANSAC)
|
|
|
|
if self.downscale > 1.0:
|
|
H[0, 2] *= self.downscale
|
|
H[1, 2] *= self.downscale
|
|
else:
|
|
LOGGER.warning("WARNING: not enough matching points")
|
|
|
|
self.prevFrame = frame.copy()
|
|
self.prevKeyPoints = copy.copy(keypoints)
|
|
|
|
return H
|
|
|
|
def reset_params(self) -> None:
|
|
"""Reset parameters."""
|
|
self.prevFrame = None
|
|
self.prevKeyPoints = None
|
|
self.prevDescriptors = None
|
|
self.initializedFirstFrame = False
|