154 lines
5.8 KiB
Python
154 lines
5.8 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
|
|
|
|
try:
|
|
assert not TESTS_RUNNING # do not log pytest
|
|
assert SETTINGS["clearml"] is True # verify integration is enabled
|
|
import clearml
|
|
from clearml import Task
|
|
|
|
assert hasattr(clearml, "__version__") # verify package is not directory
|
|
|
|
except (ImportError, AssertionError):
|
|
clearml = None
|
|
|
|
|
|
def _log_debug_samples(files, title="Debug Samples") -> None:
|
|
"""
|
|
Log files (images) as debug samples in the ClearML task.
|
|
|
|
Args:
|
|
files (list): A list of file paths in PosixPath format.
|
|
title (str): A title that groups together images with the same values.
|
|
"""
|
|
import re
|
|
|
|
if task := Task.current_task():
|
|
for f in files:
|
|
if f.exists():
|
|
it = re.search(r"_batch(\d+)", f.name)
|
|
iteration = int(it.groups()[0]) if it else 0
|
|
task.get_logger().report_image(
|
|
title=title, series=f.name.replace(it.group(), ""), local_path=str(f), iteration=iteration
|
|
)
|
|
|
|
|
|
def _log_plot(title, plot_path) -> None:
|
|
"""
|
|
Log an image as a plot in the plot section of ClearML.
|
|
|
|
Args:
|
|
title (str): The title of the plot.
|
|
plot_path (str): The path to the saved image file.
|
|
"""
|
|
import matplotlib.image as mpimg
|
|
import matplotlib.pyplot as plt
|
|
|
|
img = mpimg.imread(plot_path)
|
|
fig = plt.figure()
|
|
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
|
|
ax.imshow(img)
|
|
|
|
Task.current_task().get_logger().report_matplotlib_figure(
|
|
title=title, series="", figure=fig, report_interactive=False
|
|
)
|
|
|
|
|
|
def on_pretrain_routine_start(trainer):
|
|
"""Runs at start of pretraining routine; initializes and connects/ logs task to ClearML."""
|
|
try:
|
|
if task := Task.current_task():
|
|
# WARNING: make sure the automatic pytorch and matplotlib bindings are disabled!
|
|
# We are logging these plots and model files manually in the integration
|
|
from clearml.binding.frameworks.pytorch_bind import PatchPyTorchModelIO
|
|
from clearml.binding.matplotlib_bind import PatchedMatplotlib
|
|
|
|
PatchPyTorchModelIO.update_current_task(None)
|
|
PatchedMatplotlib.update_current_task(None)
|
|
else:
|
|
task = Task.init(
|
|
project_name=trainer.args.project or "YOLOv8",
|
|
task_name=trainer.args.name,
|
|
tags=["YOLOv8"],
|
|
output_uri=True,
|
|
reuse_last_task_id=False,
|
|
auto_connect_frameworks={"pytorch": False, "matplotlib": False},
|
|
)
|
|
LOGGER.warning(
|
|
"ClearML Initialized a new task. If you want to run remotely, "
|
|
"please add clearml-init and connect your arguments before initializing YOLO."
|
|
)
|
|
task.connect(vars(trainer.args), name="General")
|
|
except Exception as e:
|
|
LOGGER.warning(f"WARNING ⚠️ ClearML installed but not initialized correctly, not logging this run. {e}")
|
|
|
|
|
|
def on_train_epoch_end(trainer):
|
|
"""Logs debug samples for the first epoch of YOLO training and report current training progress."""
|
|
if task := Task.current_task():
|
|
# Log debug samples
|
|
if trainer.epoch == 1:
|
|
_log_debug_samples(sorted(trainer.save_dir.glob("train_batch*.jpg")), "Mosaic")
|
|
# Report the current training progress
|
|
for k, v in trainer.label_loss_items(trainer.tloss, prefix="train").items():
|
|
task.get_logger().report_scalar("train", k, v, iteration=trainer.epoch)
|
|
for k, v in trainer.lr.items():
|
|
task.get_logger().report_scalar("lr", k, v, iteration=trainer.epoch)
|
|
|
|
|
|
def on_fit_epoch_end(trainer):
|
|
"""Reports model information to logger at the end of an epoch."""
|
|
if task := Task.current_task():
|
|
# You should have access to the validation bboxes under jdict
|
|
task.get_logger().report_scalar(
|
|
title="Epoch Time", series="Epoch Time", value=trainer.epoch_time, iteration=trainer.epoch
|
|
)
|
|
for k, v in trainer.metrics.items():
|
|
task.get_logger().report_scalar("val", k, v, iteration=trainer.epoch)
|
|
if trainer.epoch == 0:
|
|
from ultralytics.utils.torch_utils import model_info_for_loggers
|
|
|
|
for k, v in model_info_for_loggers(trainer).items():
|
|
task.get_logger().report_single_value(k, v)
|
|
|
|
|
|
def on_val_end(validator):
|
|
"""Logs validation results including labels and predictions."""
|
|
if Task.current_task():
|
|
# Log val_labels and val_pred
|
|
_log_debug_samples(sorted(validator.save_dir.glob("val*.jpg")), "Validation")
|
|
|
|
|
|
def on_train_end(trainer):
|
|
"""Logs final model and its name on training completion."""
|
|
if task := Task.current_task():
|
|
# Log final results, CM matrix + PR plots
|
|
files = [
|
|
"results.png",
|
|
"confusion_matrix.png",
|
|
"confusion_matrix_normalized.png",
|
|
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")),
|
|
]
|
|
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
|
|
for f in files:
|
|
_log_plot(title=f.stem, plot_path=f)
|
|
# Report final metrics
|
|
for k, v in trainer.validator.metrics.results_dict.items():
|
|
task.get_logger().report_single_value(k, v)
|
|
# Log the final model
|
|
task.update_output_model(model_path=str(trainer.best), model_name=trainer.args.name, auto_delete_file=False)
|
|
|
|
|
|
callbacks = (
|
|
{
|
|
"on_pretrain_routine_start": on_pretrain_routine_start,
|
|
"on_train_epoch_end": on_train_epoch_end,
|
|
"on_fit_epoch_end": on_fit_epoch_end,
|
|
"on_val_end": on_val_end,
|
|
"on_train_end": on_train_end,
|
|
}
|
|
if clearml
|
|
else {}
|
|
)
|