pose-detect/ultralytics/utils/callbacks/neptune.py

113 lines
3.7 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
from ultralytics.utils import LOGGER, SETTINGS, TESTS_RUNNING
try:
assert not TESTS_RUNNING # do not log pytest
assert SETTINGS["neptune"] is True # verify integration is enabled
import neptune
from neptune.types import File
assert hasattr(neptune, "__version__")
run = None # NeptuneAI experiment logger instance
except (ImportError, AssertionError):
neptune = None
def _log_scalars(scalars, step=0):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in scalars.items():
run[k].append(value=v, step=step)
def _log_images(imgs_dict, group=""):
"""Log scalars to the NeptuneAI experiment logger."""
if run:
for k, v in imgs_dict.items():
run[f"{group}/{k}"].upload(File(v))
def _log_plot(title, plot_path):
"""
Log plots to the NeptuneAI experiment logger.
Args:
title (str): Title of the plot.
plot_path (PosixPath | str): Path to the saved image file.
"""
import matplotlib.image as mpimg
import matplotlib.pyplot as plt
img = mpimg.imread(plot_path)
fig = plt.figure()
ax = fig.add_axes([0, 0, 1, 1], frameon=False, aspect="auto", xticks=[], yticks=[]) # no ticks
ax.imshow(img)
run[f"Plots/{title}"].upload(fig)
def on_pretrain_routine_start(trainer):
"""Callback function called before the training routine starts."""
try:
global run
run = neptune.init_run(project=trainer.args.project or "YOLOv8", name=trainer.args.name, tags=["YOLOv8"])
run["Configuration/Hyperparameters"] = {k: "" if v is None else v for k, v in vars(trainer.args).items()}
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ NeptuneAI installed but not initialized correctly, not logging this run. {e}")
def on_train_epoch_end(trainer):
"""Callback function called at end of each training epoch."""
_log_scalars(trainer.label_loss_items(trainer.tloss, prefix="train"), trainer.epoch + 1)
_log_scalars(trainer.lr, trainer.epoch + 1)
if trainer.epoch == 1:
_log_images({f.stem: str(f) for f in trainer.save_dir.glob("train_batch*.jpg")}, "Mosaic")
def on_fit_epoch_end(trainer):
"""Callback function called at end of each fit (train+val) epoch."""
if run and trainer.epoch == 0:
from ultralytics.utils.torch_utils import model_info_for_loggers
run["Configuration/Model"] = model_info_for_loggers(trainer)
_log_scalars(trainer.metrics, trainer.epoch + 1)
def on_val_end(validator):
"""Callback function called at end of each validation."""
if run:
# Log val_labels and val_pred
_log_images({f.stem: str(f) for f in validator.save_dir.glob("val*.jpg")}, "Validation")
def on_train_end(trainer):
"""Callback function called at end of training."""
if run:
# Log final results, CM matrix + PR plots
files = [
"results.png",
"confusion_matrix.png",
"confusion_matrix_normalized.png",
*(f"{x}_curve.png" for x in ("F1", "PR", "P", "R")),
]
files = [(trainer.save_dir / f) for f in files if (trainer.save_dir / f).exists()] # filter
for f in files:
_log_plot(title=f.stem, plot_path=f)
# Log the final model
run[f"weights/{trainer.args.name or trainer.args.task}/{trainer.best.name}"].upload(File(str(trainer.best)))
callbacks = (
{
"on_pretrain_routine_start": on_pretrain_routine_start,
"on_train_epoch_end": on_train_epoch_end,
"on_fit_epoch_end": on_fit_epoch_end,
"on_val_end": on_val_end,
"on_train_end": on_train_end,
}
if neptune
else {}
)