208 lines
7.1 KiB
Python
208 lines
7.1 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
|
|
import numpy as np
|
|
import torch
|
|
from PIL import Image
|
|
from torch.utils.data import dataloader, distributed
|
|
|
|
from ultralytics.data.dataset import GroundingDataset, YOLODataset, YOLOMultiModalDataset
|
|
from ultralytics.data.loaders import (
|
|
LOADERS,
|
|
LoadImagesAndVideos,
|
|
LoadPilAndNumpy,
|
|
LoadScreenshots,
|
|
LoadStreams,
|
|
LoadTensor,
|
|
SourceTypes,
|
|
autocast_list,
|
|
)
|
|
from ultralytics.data.utils import IMG_FORMATS, PIN_MEMORY, VID_FORMATS
|
|
from ultralytics.utils import RANK, colorstr
|
|
from ultralytics.utils.checks import check_file
|
|
|
|
|
|
class InfiniteDataLoader(dataloader.DataLoader):
|
|
"""
|
|
Dataloader that reuses workers.
|
|
|
|
Uses same syntax as vanilla DataLoader.
|
|
"""
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
"""Dataloader that infinitely recycles workers, inherits from DataLoader."""
|
|
super().__init__(*args, **kwargs)
|
|
object.__setattr__(self, "batch_sampler", _RepeatSampler(self.batch_sampler))
|
|
self.iterator = super().__iter__()
|
|
|
|
def __len__(self):
|
|
"""Returns the length of the batch sampler's sampler."""
|
|
return len(self.batch_sampler.sampler)
|
|
|
|
def __iter__(self):
|
|
"""Creates a sampler that repeats indefinitely."""
|
|
for _ in range(len(self)):
|
|
yield next(self.iterator)
|
|
|
|
def reset(self):
|
|
"""
|
|
Reset iterator.
|
|
|
|
This is useful when we want to modify settings of dataset while training.
|
|
"""
|
|
self.iterator = self._get_iterator()
|
|
|
|
|
|
class _RepeatSampler:
|
|
"""
|
|
Sampler that repeats forever.
|
|
|
|
Args:
|
|
sampler (Dataset.sampler): The sampler to repeat.
|
|
"""
|
|
|
|
def __init__(self, sampler):
|
|
"""Initializes an object that repeats a given sampler indefinitely."""
|
|
self.sampler = sampler
|
|
|
|
def __iter__(self):
|
|
"""Iterates over the 'sampler' and yields its contents."""
|
|
while True:
|
|
yield from iter(self.sampler)
|
|
|
|
|
|
def seed_worker(worker_id): # noqa
|
|
"""Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader."""
|
|
worker_seed = torch.initial_seed() % 2**32
|
|
np.random.seed(worker_seed)
|
|
random.seed(worker_seed)
|
|
|
|
|
|
def build_yolo_dataset(cfg, img_path, batch, data, mode="train", rect=False, stride=32, multi_modal=False):
|
|
"""Build YOLO Dataset."""
|
|
dataset = YOLOMultiModalDataset if multi_modal else YOLODataset
|
|
return dataset(
|
|
img_path=img_path,
|
|
imgsz=cfg.imgsz,
|
|
batch_size=batch,
|
|
augment=mode == "train", # augmentation
|
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
|
rect=cfg.rect or rect, # rectangular batches
|
|
cache=cfg.cache or None,
|
|
single_cls=cfg.single_cls or False,
|
|
stride=int(stride),
|
|
pad=0.0 if mode == "train" else 0.5,
|
|
prefix=colorstr(f"{mode}: "),
|
|
task=cfg.task,
|
|
classes=cfg.classes,
|
|
data=data,
|
|
fraction=cfg.fraction if mode == "train" else 1.0,
|
|
)
|
|
|
|
|
|
def build_grounding(cfg, img_path, json_file, batch, mode="train", rect=False, stride=32):
|
|
"""Build YOLO Dataset."""
|
|
return GroundingDataset(
|
|
img_path=img_path,
|
|
json_file=json_file,
|
|
imgsz=cfg.imgsz,
|
|
batch_size=batch,
|
|
augment=mode == "train", # augmentation
|
|
hyp=cfg, # TODO: probably add a get_hyps_from_cfg function
|
|
rect=cfg.rect or rect, # rectangular batches
|
|
cache=cfg.cache or None,
|
|
single_cls=cfg.single_cls or False,
|
|
stride=int(stride),
|
|
pad=0.0 if mode == "train" else 0.5,
|
|
prefix=colorstr(f"{mode}: "),
|
|
task=cfg.task,
|
|
classes=cfg.classes,
|
|
fraction=cfg.fraction if mode == "train" else 1.0,
|
|
)
|
|
|
|
|
|
def build_dataloader(dataset, batch, workers, shuffle=True, rank=-1):
|
|
"""Return an InfiniteDataLoader or DataLoader for training or validation set."""
|
|
batch = min(batch, len(dataset))
|
|
nd = torch.cuda.device_count() # number of CUDA devices
|
|
nw = min(os.cpu_count() // max(nd, 1), workers) # number of workers
|
|
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
|
generator = torch.Generator()
|
|
generator.manual_seed(6148914691236517205 + RANK)
|
|
return InfiniteDataLoader(
|
|
dataset=dataset,
|
|
batch_size=batch,
|
|
shuffle=shuffle and sampler is None,
|
|
num_workers=nw,
|
|
sampler=sampler,
|
|
pin_memory=PIN_MEMORY,
|
|
collate_fn=getattr(dataset, "collate_fn", None),
|
|
worker_init_fn=seed_worker,
|
|
generator=generator,
|
|
)
|
|
|
|
|
|
def check_source(source):
|
|
"""Check source type and return corresponding flag values."""
|
|
webcam, screenshot, from_img, in_memory, tensor = False, False, False, False, False
|
|
if isinstance(source, (str, int, Path)): # int for local usb camera
|
|
source = str(source)
|
|
is_file = Path(source).suffix[1:] in (IMG_FORMATS | VID_FORMATS)
|
|
is_url = source.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://"))
|
|
webcam = source.isnumeric() or source.endswith(".streams") or (is_url and not is_file)
|
|
screenshot = source.lower() == "screen"
|
|
if is_url and is_file:
|
|
source = check_file(source) # download
|
|
elif isinstance(source, LOADERS):
|
|
in_memory = True
|
|
elif isinstance(source, (list, tuple)):
|
|
source = autocast_list(source) # convert all list elements to PIL or np arrays
|
|
from_img = True
|
|
elif isinstance(source, (Image.Image, np.ndarray)):
|
|
from_img = True
|
|
elif isinstance(source, torch.Tensor):
|
|
tensor = True
|
|
else:
|
|
raise TypeError("Unsupported image type. For supported types see https://docs.ultralytics.com/modes/predict")
|
|
|
|
return source, webcam, screenshot, from_img, in_memory, tensor
|
|
|
|
|
|
def load_inference_source(source=None, batch=1, vid_stride=1, buffer=False):
|
|
"""
|
|
Loads an inference source for object detection and applies necessary transformations.
|
|
|
|
Args:
|
|
source (str, Path, Tensor, PIL.Image, np.ndarray): The input source for inference.
|
|
batch (int, optional): Batch size for dataloaders. Default is 1.
|
|
vid_stride (int, optional): The frame interval for video sources. Default is 1.
|
|
buffer (bool, optional): Determined whether stream frames will be buffered. Default is False.
|
|
|
|
Returns:
|
|
dataset (Dataset): A dataset object for the specified input source.
|
|
"""
|
|
source, stream, screenshot, from_img, in_memory, tensor = check_source(source)
|
|
source_type = source.source_type if in_memory else SourceTypes(stream, screenshot, from_img, tensor)
|
|
|
|
# Dataloader
|
|
if tensor:
|
|
dataset = LoadTensor(source)
|
|
elif in_memory:
|
|
dataset = source
|
|
elif stream:
|
|
dataset = LoadStreams(source, vid_stride=vid_stride, buffer=buffer)
|
|
elif screenshot:
|
|
dataset = LoadScreenshots(source)
|
|
elif from_img:
|
|
dataset = LoadPilAndNumpy(source)
|
|
else:
|
|
dataset = LoadImagesAndVideos(source, batch=batch, vid_stride=vid_stride)
|
|
|
|
# Attach source types to the dataset
|
|
setattr(dataset, "source_type", source_type)
|
|
|
|
return dataset
|