103 lines
3.6 KiB
Python
103 lines
3.6 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
from copy import copy
|
|
|
|
import torch
|
|
|
|
from ultralytics.models.yolo.detect import DetectionTrainer
|
|
from ultralytics.nn.tasks import RTDETRDetectionModel
|
|
from ultralytics.utils import RANK, colorstr
|
|
|
|
from .val import RTDETRDataset, RTDETRValidator
|
|
|
|
|
|
class RTDETRTrainer(DetectionTrainer):
|
|
"""
|
|
Trainer class for the RT-DETR model developed by Baidu for real-time object detection. Extends the DetectionTrainer
|
|
class for YOLO to adapt to the specific features and architecture of RT-DETR. This model leverages Vision
|
|
Transformers and has capabilities like IoU-aware query selection and adaptable inference speed.
|
|
|
|
Notes:
|
|
- F.grid_sample used in RT-DETR does not support the `deterministic=True` argument.
|
|
- AMP training can lead to NaN outputs and may produce errors during bipartite graph matching.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.rtdetr.train import RTDETRTrainer
|
|
|
|
args = dict(model='rtdetr-l.yaml', data='coco8.yaml', imgsz=640, epochs=3)
|
|
trainer = RTDETRTrainer(overrides=args)
|
|
trainer.train()
|
|
```
|
|
"""
|
|
|
|
def get_model(self, cfg=None, weights=None, verbose=True):
|
|
"""
|
|
Initialize and return an RT-DETR model for object detection tasks.
|
|
|
|
Args:
|
|
cfg (dict, optional): Model configuration. Defaults to None.
|
|
weights (str, optional): Path to pre-trained model weights. Defaults to None.
|
|
verbose (bool): Verbose logging if True. Defaults to True.
|
|
|
|
Returns:
|
|
(RTDETRDetectionModel): Initialized model.
|
|
"""
|
|
model = RTDETRDetectionModel(cfg, nc=self.data["nc"], verbose=verbose and RANK == -1)
|
|
if weights:
|
|
model.load(weights)
|
|
return model
|
|
|
|
def build_dataset(self, img_path, mode="val", batch=None):
|
|
"""
|
|
Build and return an RT-DETR dataset for training or validation.
|
|
|
|
Args:
|
|
img_path (str): Path to the folder containing images.
|
|
mode (str): Dataset mode, either 'train' or 'val'.
|
|
batch (int, optional): Batch size for rectangle training. Defaults to None.
|
|
|
|
Returns:
|
|
(RTDETRDataset): Dataset object for the specific mode.
|
|
"""
|
|
return RTDETRDataset(
|
|
img_path=img_path,
|
|
imgsz=self.args.imgsz,
|
|
batch_size=batch,
|
|
augment=mode == "train",
|
|
hyp=self.args,
|
|
rect=False,
|
|
cache=self.args.cache or None,
|
|
prefix=colorstr(f"{mode}: "),
|
|
data=self.data,
|
|
)
|
|
|
|
def get_validator(self):
|
|
"""
|
|
Returns a DetectionValidator suitable for RT-DETR model validation.
|
|
|
|
Returns:
|
|
(RTDETRValidator): Validator object for model validation.
|
|
"""
|
|
self.loss_names = "giou_loss", "cls_loss", "l1_loss"
|
|
return RTDETRValidator(self.test_loader, save_dir=self.save_dir, args=copy(self.args))
|
|
|
|
def preprocess_batch(self, batch):
|
|
"""
|
|
Preprocess a batch of images. Scales and converts the images to float format.
|
|
|
|
Args:
|
|
batch (dict): Dictionary containing a batch of images, bboxes, and labels.
|
|
|
|
Returns:
|
|
(dict): Preprocessed batch.
|
|
"""
|
|
batch = super().preprocess_batch(batch)
|
|
bs = len(batch["img"])
|
|
batch_idx = batch["batch_idx"]
|
|
gt_bbox, gt_class = [], []
|
|
for i in range(bs):
|
|
gt_bbox.append(batch["bboxes"][batch_idx == i].to(batch_idx.device))
|
|
gt_class.append(batch["cls"][batch_idx == i].to(device=batch_idx.device, dtype=torch.long))
|
|
return batch
|