136 lines
5.4 KiB
Python
136 lines
5.4 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import torch
|
|
|
|
from ultralytics.data import YOLODataset
|
|
from ultralytics.data.augment import Compose, Format, v8_transforms
|
|
from ultralytics.models.yolo.detect import DetectionValidator
|
|
from ultralytics.utils import colorstr, ops
|
|
|
|
__all__ = ("RTDETRValidator",) # tuple or list
|
|
|
|
|
|
class RTDETRDataset(YOLODataset):
|
|
"""
|
|
Real-Time DEtection and TRacking (RT-DETR) dataset class extending the base YOLODataset class.
|
|
|
|
This specialized dataset class is designed for use with the RT-DETR object detection model and is optimized for
|
|
real-time detection and tracking tasks.
|
|
"""
|
|
|
|
def __init__(self, *args, data=None, **kwargs):
|
|
"""Initialize the RTDETRDataset class by inheriting from the YOLODataset class."""
|
|
super().__init__(*args, data=data, **kwargs)
|
|
|
|
# NOTE: add stretch version load_image for RTDETR mosaic
|
|
def load_image(self, i, rect_mode=False):
|
|
"""Loads 1 image from dataset index 'i', returns (im, resized hw)."""
|
|
return super().load_image(i=i, rect_mode=rect_mode)
|
|
|
|
def build_transforms(self, hyp=None):
|
|
"""Temporary, only for evaluation."""
|
|
if self.augment:
|
|
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0
|
|
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0
|
|
transforms = v8_transforms(self, self.imgsz, hyp, stretch=True)
|
|
else:
|
|
# transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), auto=False, scaleFill=True)])
|
|
transforms = Compose([])
|
|
transforms.append(
|
|
Format(
|
|
bbox_format="xywh",
|
|
normalize=True,
|
|
return_mask=self.use_segments,
|
|
return_keypoint=self.use_keypoints,
|
|
batch_idx=True,
|
|
mask_ratio=hyp.mask_ratio,
|
|
mask_overlap=hyp.overlap_mask,
|
|
)
|
|
)
|
|
return transforms
|
|
|
|
|
|
class RTDETRValidator(DetectionValidator):
|
|
"""
|
|
RTDETRValidator extends the DetectionValidator class to provide validation capabilities specifically tailored for
|
|
the RT-DETR (Real-Time DETR) object detection model.
|
|
|
|
The class allows building of an RTDETR-specific dataset for validation, applies Non-maximum suppression for
|
|
post-processing, and updates evaluation metrics accordingly.
|
|
|
|
Example:
|
|
```python
|
|
from ultralytics.models.rtdetr import RTDETRValidator
|
|
|
|
args = dict(model='rtdetr-l.pt', data='coco8.yaml')
|
|
validator = RTDETRValidator(args=args)
|
|
validator()
|
|
```
|
|
|
|
Note:
|
|
For further details on the attributes and methods, refer to the parent DetectionValidator class.
|
|
"""
|
|
|
|
def build_dataset(self, img_path, mode="val", batch=None):
|
|
"""
|
|
Build an RTDETR Dataset.
|
|
|
|
Args:
|
|
img_path (str): Path to the folder containing images.
|
|
mode (str): `train` mode or `val` mode, users are able to customize different augmentations for each mode.
|
|
batch (int, optional): Size of batches, this is for `rect`. Defaults to None.
|
|
"""
|
|
return RTDETRDataset(
|
|
img_path=img_path,
|
|
imgsz=self.args.imgsz,
|
|
batch_size=batch,
|
|
augment=False, # no augmentation
|
|
hyp=self.args,
|
|
rect=False, # no rect
|
|
cache=self.args.cache or None,
|
|
prefix=colorstr(f"{mode}: "),
|
|
data=self.data,
|
|
)
|
|
|
|
def postprocess(self, preds):
|
|
"""Apply Non-maximum suppression to prediction outputs."""
|
|
if not isinstance(preds, (list, tuple)): # list for PyTorch inference but list[0] Tensor for export inference
|
|
preds = [preds, None]
|
|
|
|
bs, _, nd = preds[0].shape
|
|
bboxes, scores = preds[0].split((4, nd - 4), dim=-1)
|
|
bboxes *= self.args.imgsz
|
|
outputs = [torch.zeros((0, 6), device=bboxes.device)] * bs
|
|
for i, bbox in enumerate(bboxes): # (300, 4)
|
|
bbox = ops.xywh2xyxy(bbox)
|
|
score, cls = scores[i].max(-1) # (300, )
|
|
# Do not need threshold for evaluation as only got 300 boxes here
|
|
# idx = score > self.args.conf
|
|
pred = torch.cat([bbox, score[..., None], cls[..., None]], dim=-1) # filter
|
|
# Sort by confidence to correctly get internal metrics
|
|
pred = pred[score.argsort(descending=True)]
|
|
outputs[i] = pred # [idx]
|
|
|
|
return outputs
|
|
|
|
def _prepare_batch(self, si, batch):
|
|
"""Prepares a batch for training or inference by applying transformations."""
|
|
idx = batch["batch_idx"] == si
|
|
cls = batch["cls"][idx].squeeze(-1)
|
|
bbox = batch["bboxes"][idx]
|
|
ori_shape = batch["ori_shape"][si]
|
|
imgsz = batch["img"].shape[2:]
|
|
ratio_pad = batch["ratio_pad"][si]
|
|
if len(cls):
|
|
bbox = ops.xywh2xyxy(bbox) # target boxes
|
|
bbox[..., [0, 2]] *= ori_shape[1] # native-space pred
|
|
bbox[..., [1, 3]] *= ori_shape[0] # native-space pred
|
|
return {"cls": cls, "bbox": bbox, "ori_shape": ori_shape, "imgsz": imgsz, "ratio_pad": ratio_pad}
|
|
|
|
def _prepare_pred(self, pred, pbatch):
|
|
"""Prepares and returns a batch with transformed bounding boxes and class labels."""
|
|
predn = pred.clone()
|
|
predn[..., [0, 2]] *= pbatch["ori_shape"][1] / self.args.imgsz # native-space pred
|
|
predn[..., [1, 3]] *= pbatch["ori_shape"][0] / self.args.imgsz # native-space pred
|
|
return predn.float()
|