pose-detect/ultralytics/cfg/__init__.py

869 lines
32 KiB
Python

# Ultralytics YOLO 🚀, AGPL-3.0 license
import contextlib
import shutil
import subprocess
import sys
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, List, Union
from ultralytics.utils import (
ASSETS,
DEFAULT_CFG,
DEFAULT_CFG_DICT,
DEFAULT_CFG_PATH,
LOGGER,
RANK,
ROOT,
RUNS_DIR,
SETTINGS,
SETTINGS_YAML,
TESTS_RUNNING,
IterableSimpleNamespace,
__version__,
checks,
colorstr,
deprecation_warn,
yaml_load,
yaml_print,
)
# Define valid tasks and modes
MODES = {"train", "val", "predict", "export", "track", "benchmark"}
TASKS = {"detect", "segment", "classify", "pose", "obb"}
TASK2DATA = {
"detect": "coco8.yaml",
"segment": "coco8-seg.yaml",
"classify": "imagenet10",
"pose": "coco8-pose.yaml",
"obb": "dota8.yaml",
}
TASK2MODEL = {
"detect": "yolov8n.pt",
"segment": "yolov8n-seg.pt",
"classify": "yolov8n-cls.pt",
"pose": "yolov8n-pose.pt",
"obb": "yolov8n-obb.pt",
}
TASK2METRIC = {
"detect": "metrics/mAP50-95(B)",
"segment": "metrics/mAP50-95(M)",
"classify": "metrics/accuracy_top1",
"pose": "metrics/mAP50-95(P)",
"obb": "metrics/mAP50-95(B)",
}
MODELS = {TASK2MODEL[task] for task in TASKS}
ARGV = sys.argv or ["", ""] # sometimes sys.argv = []
CLI_HELP_MSG = f"""
Arguments received: {str(['yolo'] + ARGV[1:])}. Ultralytics 'yolo' commands use the following syntax:
yolo TASK MODE ARGS
Where TASK (optional) is one of {TASKS}
MODE (required) is one of {MODES}
ARGS (optional) are any number of custom 'arg=value' pairs like 'imgsz=320' that override defaults.
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
3. Val a pretrained detection model at batch-size 1 and image size 640:
yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
yolo explorer data=data.yaml model=yolov8n.pt
6. Streamlit real-time object detection on your webcam with Ultralytics YOLOv8
yolo streamlit-predict
7. Run special commands:
yolo help
yolo checks
yolo version
yolo settings
yolo copy-cfg
yolo cfg
Docs: https://docs.ultralytics.com
Community: https://community.ultralytics.com
GitHub: https://github.com/ultralytics/ultralytics
"""
# Define keys for arg type checks
CFG_FLOAT_KEYS = { # integer or float arguments, i.e. x=2 and x=2.0
"warmup_epochs",
"box",
"cls",
"dfl",
"degrees",
"shear",
"time",
"workspace",
"batch",
}
CFG_FRACTION_KEYS = { # fractional float arguments with 0.0<=values<=1.0
"dropout",
"lr0",
"lrf",
"momentum",
"weight_decay",
"warmup_momentum",
"warmup_bias_lr",
"label_smoothing",
"hsv_h",
"hsv_s",
"hsv_v",
"translate",
"scale",
"perspective",
"flipud",
"fliplr",
"bgr",
"mosaic",
"mixup",
"copy_paste",
"conf",
"iou",
"fraction",
}
CFG_INT_KEYS = { # integer-only arguments
"epochs",
"patience",
"workers",
"seed",
"close_mosaic",
"mask_ratio",
"max_det",
"vid_stride",
"line_width",
"nbs",
"save_period",
}
CFG_BOOL_KEYS = { # boolean-only arguments
"save",
"exist_ok",
"verbose",
"deterministic",
"single_cls",
"rect",
"cos_lr",
"overlap_mask",
"val",
"save_json",
"save_hybrid",
"half",
"dnn",
"plots",
"show",
"save_txt",
"save_conf",
"save_crop",
"save_frames",
"show_labels",
"show_conf",
"visualize",
"augment",
"agnostic_nms",
"retina_masks",
"show_boxes",
"keras",
"optimize",
"int8",
"dynamic",
"simplify",
"nms",
"profile",
"multi_scale",
}
def cfg2dict(cfg):
"""
Converts a configuration object to a dictionary.
Args:
cfg (str | Path | Dict | SimpleNamespace): Configuration object to be converted. Can be a file path,
a string, a dictionary, or a SimpleNamespace object.
Returns:
(Dict): Configuration object in dictionary format.
Examples:
Convert a YAML file path to a dictionary:
>>> config_dict = cfg2dict('config.yaml')
Convert a SimpleNamespace to a dictionary:
>>> from types import SimpleNamespace
>>> config_sn = SimpleNamespace(param1='value1', param2='value2')
>>> config_dict = cfg2dict(config_sn)
Pass through an already existing dictionary:
>>> config_dict = cfg2dict({'param1': 'value1', 'param2': 'value2'})
Notes:
- If cfg is a path or string, it's loaded as YAML and converted to a dictionary.
- If cfg is a SimpleNamespace object, it's converted to a dictionary using vars().
- If cfg is already a dictionary, it's returned unchanged.
"""
if isinstance(cfg, (str, Path)):
cfg = yaml_load(cfg) # load dict
elif isinstance(cfg, SimpleNamespace):
cfg = vars(cfg) # convert to dict
return cfg
def get_cfg(cfg: Union[str, Path, Dict, SimpleNamespace] = DEFAULT_CFG_DICT, overrides: Dict = None):
"""
Load and merge configuration data from a file or dictionary, with optional overrides.
Args:
cfg (str | Path | Dict | SimpleNamespace): Configuration data source. Can be a file path, dictionary, or
SimpleNamespace object.
overrides (Dict | None): Dictionary containing key-value pairs to override the base configuration.
Returns:
(SimpleNamespace): Namespace containing the merged configuration arguments.
Examples:
>>> from ultralytics.cfg import get_cfg
>>> config = get_cfg() # Load default configuration
>>> config = get_cfg('path/to/config.yaml', overrides={'epochs': 50, 'batch_size': 16})
Notes:
- If both `cfg` and `overrides` are provided, the values in `overrides` will take precedence.
- Special handling ensures alignment and correctness of the configuration, such as converting numeric
`project` and `name` to strings and validating configuration keys and values.
- The function performs type and value checks on the configuration data.
"""
cfg = cfg2dict(cfg)
# Merge overrides
if overrides:
overrides = cfg2dict(overrides)
if "save_dir" not in cfg:
overrides.pop("save_dir", None) # special override keys to ignore
check_dict_alignment(cfg, overrides)
cfg = {**cfg, **overrides} # merge cfg and overrides dicts (prefer overrides)
# Special handling for numeric project/name
for k in "project", "name":
if k in cfg and isinstance(cfg[k], (int, float)):
cfg[k] = str(cfg[k])
if cfg.get("name") == "model": # assign model to 'name' arg
cfg["name"] = cfg.get("model", "").split(".")[0]
LOGGER.warning(f"WARNING ⚠️ 'name=model' automatically updated to 'name={cfg['name']}'.")
# Type and Value checks
check_cfg(cfg)
# Return instance
return IterableSimpleNamespace(**cfg)
def check_cfg(cfg, hard=True):
"""
Checks configuration argument types and values for the Ultralytics library.
This function validates the types and values of configuration arguments, ensuring correctness and converting
them if necessary. It checks for specific key types defined in global variables such as CFG_FLOAT_KEYS,
CFG_FRACTION_KEYS, CFG_INT_KEYS, and CFG_BOOL_KEYS.
Args:
cfg (Dict): Configuration dictionary to validate.
hard (bool): If True, raises exceptions for invalid types and values; if False, attempts to convert them.
Examples:
>>> config = {
... 'epochs': 50, # valid integer
... 'lr0': 0.01, # valid float
... 'momentum': 1.2, # invalid float (out of 0.0-1.0 range)
... 'save': 'true', # invalid bool
... }
>>> check_cfg(config, hard=False)
>>> print(config)
{'epochs': 50, 'lr0': 0.01, 'momentum': 1.2, 'save': False} # corrected 'save' key
Notes:
- The function modifies the input dictionary in-place.
- None values are ignored as they may be from optional arguments.
- Fraction keys are checked to be within the range [0.0, 1.0].
"""
for k, v in cfg.items():
if v is not None: # None values may be from optional args
if k in CFG_FLOAT_KEYS and not isinstance(v, (int, float)):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
cfg[k] = float(v)
elif k in CFG_FRACTION_KEYS:
if not isinstance(v, (int, float)):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"Valid '{k}' types are int (i.e. '{k}=0') or float (i.e. '{k}=0.5')"
)
cfg[k] = v = float(v)
if not (0.0 <= v <= 1.0):
raise ValueError(f"'{k}={v}' is an invalid value. " f"Valid '{k}' values are between 0.0 and 1.0.")
elif k in CFG_INT_KEYS and not isinstance(v, int):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. " f"'{k}' must be an int (i.e. '{k}=8')"
)
cfg[k] = int(v)
elif k in CFG_BOOL_KEYS and not isinstance(v, bool):
if hard:
raise TypeError(
f"'{k}={v}' is of invalid type {type(v).__name__}. "
f"'{k}' must be a bool (i.e. '{k}=True' or '{k}=False')"
)
cfg[k] = bool(v)
def get_save_dir(args, name=None):
"""
Returns the directory path for saving outputs, derived from arguments or default settings.
Args:
args (SimpleNamespace): Namespace object containing configurations such as 'project', 'name', 'task',
'mode', and 'save_dir'.
name (str | None): Optional name for the output directory. If not provided, it defaults to 'args.name'
or the 'args.mode'.
Returns:
(Path): Directory path where outputs should be saved.
Examples:
>>> from types import SimpleNamespace
>>> args = SimpleNamespace(project='my_project', task='detect', mode='train', exist_ok=True)
>>> save_dir = get_save_dir(args)
>>> print(save_dir)
my_project/detect/train
"""
if getattr(args, "save_dir", None):
save_dir = args.save_dir
else:
from ultralytics.utils.files import increment_path
project = args.project or (ROOT.parent / "tests/tmp/runs" if TESTS_RUNNING else RUNS_DIR) / args.task
name = name or args.name or f"{args.mode}"
save_dir = increment_path(Path(project) / name, exist_ok=args.exist_ok if RANK in {-1, 0} else True)
return Path(save_dir)
def _handle_deprecation(custom):
"""
Handles deprecated configuration keys by mapping them to current equivalents with deprecation warnings.
Args:
custom (Dict): Configuration dictionary potentially containing deprecated keys.
Examples:
>>> custom_config = {"boxes": True, "hide_labels": "False", "line_thickness": 2}
>>> _handle_deprecation(custom_config)
>>> print(custom_config)
{'show_boxes': True, 'show_labels': True, 'line_width': 2}
Notes:
This function modifies the input dictionary in-place, replacing deprecated keys with their current
equivalents. It also handles value conversions where necessary, such as inverting boolean values for
'hide_labels' and 'hide_conf'.
"""
for key in custom.copy().keys():
if key == "boxes":
deprecation_warn(key, "show_boxes")
custom["show_boxes"] = custom.pop("boxes")
if key == "hide_labels":
deprecation_warn(key, "show_labels")
custom["show_labels"] = custom.pop("hide_labels") == "False"
if key == "hide_conf":
deprecation_warn(key, "show_conf")
custom["show_conf"] = custom.pop("hide_conf") == "False"
if key == "line_thickness":
deprecation_warn(key, "line_width")
custom["line_width"] = custom.pop("line_thickness")
return custom
def check_dict_alignment(base: Dict, custom: Dict, e=None):
"""
Checks alignment between custom and base configuration dictionaries, handling deprecated keys and providing error
messages for mismatched keys.
Args:
base (Dict): The base configuration dictionary containing valid keys.
custom (Dict): The custom configuration dictionary to be checked for alignment.
e (Exception | None): Optional error instance passed by the calling function.
Raises:
SystemExit: If mismatched keys are found between the custom and base dictionaries.
Examples:
>>> base_cfg = {'epochs': 50, 'lr0': 0.01, 'batch_size': 16}
>>> custom_cfg = {'epoch': 100, 'lr': 0.02, 'batch_size': 32}
>>> try:
... check_dict_alignment(base_cfg, custom_cfg)
... except SystemExit:
... print("Mismatched keys found")
Notes:
- Suggests corrections for mismatched keys based on similarity to valid keys.
- Automatically replaces deprecated keys in the custom configuration with updated equivalents.
- Prints detailed error messages for each mismatched key to help users correct their configurations.
"""
custom = _handle_deprecation(custom)
base_keys, custom_keys = (set(x.keys()) for x in (base, custom))
mismatched = [k for k in custom_keys if k not in base_keys]
if mismatched:
from difflib import get_close_matches
string = ""
for x in mismatched:
matches = get_close_matches(x, base_keys) # key list
matches = [f"{k}={base[k]}" if base.get(k) is not None else k for k in matches]
match_str = f"Similar arguments are i.e. {matches}." if matches else ""
string += f"'{colorstr('red', 'bold', x)}' is not a valid YOLO argument. {match_str}\n"
raise SyntaxError(string + CLI_HELP_MSG) from e
def merge_equals_args(args: List[str]) -> List[str]:
"""
Merges arguments around isolated '=' in a list of strings, handling three cases:
1. ['arg', '=', 'val'] becomes ['arg=val'],
2. ['arg=', 'val'] becomes ['arg=val'],
3. ['arg', '=val'] becomes ['arg=val'].
Args:
args (List[str]): A list of strings where each element represents an argument.
Returns:
(List[str]): A list of strings where the arguments around isolated '=' are merged.
Examples:
>>> args = ["arg1", "=", "value", "arg2=", "value2", "arg3", "=value3"]
>>> merge_equals_args(args)
['arg1=value', 'arg2=value2', 'arg3=value3']
"""
new_args = []
for i, arg in enumerate(args):
if arg == "=" and 0 < i < len(args) - 1: # merge ['arg', '=', 'val']
new_args[-1] += f"={args[i + 1]}"
del args[i + 1]
elif arg.endswith("=") and i < len(args) - 1 and "=" not in args[i + 1]: # merge ['arg=', 'val']
new_args.append(f"{arg}{args[i + 1]}")
del args[i + 1]
elif arg.startswith("=") and i > 0: # merge ['arg', '=val']
new_args[-1] += arg
else:
new_args.append(arg)
return new_args
def handle_yolo_hub(args: List[str]) -> None:
"""
Handles Ultralytics HUB command-line interface (CLI) commands for authentication.
This function processes Ultralytics HUB CLI commands such as login and logout. It should be called when executing a
script with arguments related to HUB authentication.
Args:
args (List[str]): A list of command line arguments. The first argument should be either 'login'
or 'logout'. For 'login', an optional second argument can be the API key.
Examples:
```bash
yolo hub login YOUR_API_KEY
```
Notes:
- The function imports the 'hub' module from ultralytics to perform login and logout operations.
- For the 'login' command, if no API key is provided, an empty string is passed to the login function.
- The 'logout' command does not require any additional arguments.
"""
from ultralytics import hub
if args[0] == "login":
key = args[1] if len(args) > 1 else ""
# Log in to Ultralytics HUB using the provided API key
hub.login(key)
elif args[0] == "logout":
# Log out from Ultralytics HUB
hub.logout()
def handle_yolo_settings(args: List[str]) -> None:
"""
Handles YOLO settings command-line interface (CLI) commands.
This function processes YOLO settings CLI commands such as reset and updating individual settings. It should be
called when executing a script with arguments related to YOLO settings management.
Args:
args (List[str]): A list of command line arguments for YOLO settings management.
Examples:
>>> handle_yolo_settings(["reset"]) # Reset YOLO settings
>>> handle_yolo_settings(["default_cfg_path=yolov8n.yaml"]) # Update a specific setting
Notes:
- If no arguments are provided, the function will display the current settings.
- The 'reset' command will delete the existing settings file and create new default settings.
- Other arguments are treated as key-value pairs to update specific settings.
- The function will check for alignment between the provided settings and the existing ones.
- After processing, the updated settings will be displayed.
- For more information on handling YOLO settings, visit:
https://docs.ultralytics.com/quickstart/#ultralytics-settings
"""
url = "https://docs.ultralytics.com/quickstart/#ultralytics-settings" # help URL
try:
if any(args):
if args[0] == "reset":
SETTINGS_YAML.unlink() # delete the settings file
SETTINGS.reset() # create new settings
LOGGER.info("Settings reset successfully") # inform the user that settings have been reset
else: # save a new setting
new = dict(parse_key_value_pair(a) for a in args)
check_dict_alignment(SETTINGS, new)
SETTINGS.update(new)
LOGGER.info(f"💡 Learn about settings at {url}")
yaml_print(SETTINGS_YAML) # print the current settings
except Exception as e:
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.")
def handle_explorer(args: List[str]):
"""
This function launches a graphical user interface that provides tools for interacting with and analyzing datasets
using the Ultralytics Explorer API. It checks for the required 'streamlit' package and informs the user that the
Explorer dashboard is loading.
Args:
args (List[str]): A list of optional command line arguments.
Examples:
```bash
yolo explorer data=data.yaml model=yolov8n.pt
```
Notes:
- Requires 'streamlit' package version 1.29.0 or higher.
- The function does not take any arguments or return any values.
- It is typically called from the command line interface using the 'yolo explorer' command.
"""
checks.check_requirements("streamlit>=1.29.0")
LOGGER.info("💡 Loading Explorer dashboard...")
cmd = ["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"]
new = dict(parse_key_value_pair(a) for a in args)
check_dict_alignment(base={k: DEFAULT_CFG_DICT[k] for k in ["model", "data"]}, custom=new)
for k, v in new.items():
cmd += [k, v]
subprocess.run(cmd)
def handle_streamlit_inference():
"""
Open the Ultralytics Live Inference Streamlit app for real-time object detection.
This function initializes and runs a Streamlit application designed for performing live object detection using
Ultralytics models. It checks for the required Streamlit package and launches the app.
Examples:
>>> handle_streamlit_inference()
Notes:
- Requires Streamlit version 1.29.0 or higher.
- The app is launched using the 'streamlit run' command.
- The Streamlit app file is located in the Ultralytics package directory.
"""
checks.check_requirements("streamlit>=1.29.0")
LOGGER.info("💡 Loading Ultralytics Live Inference app...")
subprocess.run(["streamlit", "run", ROOT / "solutions/streamlit_inference.py", "--server.headless", "true"])
def parse_key_value_pair(pair: str = "key=value"):
"""
Parses a key-value pair string into separate key and value components.
Args:
pair (str): A string containing a key-value pair in the format "key=value".
Returns:
(tuple): A tuple containing two elements:
- key (str): The parsed key.
- value (str): The parsed value.
Raises:
AssertionError: If the value is missing or empty.
Examples:
>>> key, value = parse_key_value_pair("model=yolov8n.pt")
>>> print(f"Key: {key}, Value: {value}")
Key: model, Value: yolov8n.pt
>>> key, value = parse_key_value_pair("epochs=100")
>>> print(f"Key: {key}, Value: {value}")
Key: epochs, Value: 100
Notes:
- The function splits the input string on the first '=' character.
- Leading and trailing whitespace is removed from both key and value.
- An assertion error is raised if the value is empty after stripping.
"""
k, v = pair.split("=", 1) # split on first '=' sign
k, v = k.strip(), v.strip() # remove spaces
assert v, f"missing '{k}' value"
return k, smart_value(v)
def smart_value(v):
"""
Converts a string representation of a value to its appropriate Python type.
This function attempts to convert a given string into a Python object of the most appropriate type. It handles
conversions to None, bool, int, float, and other types that can be evaluated safely.
Args:
v (str): The string representation of the value to be converted.
Returns:
(Any): The converted value. The type can be None, bool, int, float, or the original string if no conversion
is applicable.
Examples:
>>> smart_value("42")
42
>>> smart_value("3.14")
3.14
>>> smart_value("True")
True
>>> smart_value("None")
None
>>> smart_value("some_string")
'some_string'
Notes:
- The function uses a case-insensitive comparison for boolean and None values.
- For other types, it attempts to use Python's eval() function, which can be unsafe if used on untrusted input.
- If no conversion is possible, the original string is returned.
"""
v_lower = v.lower()
if v_lower == "none":
return None
elif v_lower == "true":
return True
elif v_lower == "false":
return False
else:
with contextlib.suppress(Exception):
return eval(v)
return v
def entrypoint(debug=""):
"""
Ultralytics entrypoint function for parsing and executing command-line arguments.
This function serves as the main entry point for the Ultralytics CLI, parsing command-line arguments and
executing the corresponding tasks such as training, validation, prediction, exporting models, and more.
Args:
debug (str): Space-separated string of command-line arguments for debugging purposes.
Examples:
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
>>> entrypoint("train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01")
Predict a YouTube video using a pretrained segmentation model at image size 320:
>>> entrypoint("predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
Validate a pretrained detection model at batch-size 1 and image size 640:
>>> entrypoint("val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640")
Notes:
- If no arguments are passed, the function will display the usage help message.
- For a list of all available commands and their arguments, see the provided help messages and the
Ultralytics documentation at https://docs.ultralytics.com.
"""
args = (debug.split(" ") if debug else ARGV)[1:]
if not args: # no arguments passed
LOGGER.info(CLI_HELP_MSG)
return
special = {
"help": lambda: LOGGER.info(CLI_HELP_MSG),
"checks": checks.collect_system_info,
"version": lambda: LOGGER.info(__version__),
"settings": lambda: handle_yolo_settings(args[1:]),
"cfg": lambda: yaml_print(DEFAULT_CFG_PATH),
"hub": lambda: handle_yolo_hub(args[1:]),
"login": lambda: handle_yolo_hub(args),
"copy-cfg": copy_default_cfg,
"explorer": lambda: handle_explorer(args[1:]),
"streamlit-predict": lambda: handle_streamlit_inference(),
}
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
# Define common misuses of special commands, i.e. -h, -help, --help
special.update({k[0]: v for k, v in special.items()}) # singular
special.update({k[:-1]: v for k, v in special.items() if len(k) > 1 and k.endswith("s")}) # singular
special = {**special, **{f"-{k}": v for k, v in special.items()}, **{f"--{k}": v for k, v in special.items()}}
overrides = {} # basic overrides, i.e. imgsz=320
for a in merge_equals_args(args): # merge spaces around '=' sign
if a.startswith("--"):
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require leading dashes '--', updating to '{a[2:]}'.")
a = a[2:]
if a.endswith(","):
LOGGER.warning(f"WARNING ⚠️ argument '{a}' does not require trailing comma ',', updating to '{a[:-1]}'.")
a = a[:-1]
if "=" in a:
try:
k, v = parse_key_value_pair(a)
if k == "cfg" and v is not None: # custom.yaml passed
LOGGER.info(f"Overriding {DEFAULT_CFG_PATH} with {v}")
overrides = {k: val for k, val in yaml_load(checks.check_yaml(v)).items() if k != "cfg"}
else:
overrides[k] = v
except (NameError, SyntaxError, ValueError, AssertionError) as e:
check_dict_alignment(full_args_dict, {a: ""}, e)
elif a in TASKS:
overrides["task"] = a
elif a in MODES:
overrides["mode"] = a
elif a.lower() in special:
special[a.lower()]()
return
elif a in DEFAULT_CFG_DICT and isinstance(DEFAULT_CFG_DICT[a], bool):
overrides[a] = True # auto-True for default bool args, i.e. 'yolo show' sets show=True
elif a in DEFAULT_CFG_DICT:
raise SyntaxError(
f"'{colorstr('red', 'bold', a)}' is a valid YOLO argument but is missing an '=' sign "
f"to set its value, i.e. try '{a}={DEFAULT_CFG_DICT[a]}'\n{CLI_HELP_MSG}"
)
else:
check_dict_alignment(full_args_dict, {a: ""})
# Check keys
check_dict_alignment(full_args_dict, overrides)
# Mode
mode = overrides.get("mode")
if mode is None:
mode = DEFAULT_CFG.mode or "predict"
LOGGER.warning(f"WARNING ⚠️ 'mode' argument is missing. Valid modes are {MODES}. Using default 'mode={mode}'.")
elif mode not in MODES:
raise ValueError(f"Invalid 'mode={mode}'. Valid modes are {MODES}.\n{CLI_HELP_MSG}")
# Task
task = overrides.pop("task", None)
if task:
if task not in TASKS:
raise ValueError(f"Invalid 'task={task}'. Valid tasks are {TASKS}.\n{CLI_HELP_MSG}")
if "model" not in overrides:
overrides["model"] = TASK2MODEL[task]
# Model
model = overrides.pop("model", DEFAULT_CFG.model)
if model is None:
model = "yolov8n.pt"
LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.")
overrides["model"] = model
stem = Path(model).stem.lower()
if "rtdetr" in stem: # guess architecture
from ultralytics import RTDETR
model = RTDETR(model) # no task argument
elif "fastsam" in stem:
from ultralytics import FastSAM
model = FastSAM(model)
elif "sam" in stem:
from ultralytics import SAM
model = SAM(model)
else:
from ultralytics import YOLO
model = YOLO(model, task=task)
if isinstance(overrides.get("pretrained"), str):
model.load(overrides["pretrained"])
# Task Update
if task != model.task:
if task:
LOGGER.warning(
f"WARNING ⚠️ conflicting 'task={task}' passed with 'task={model.task}' model. "
f"Ignoring 'task={task}' and updating to 'task={model.task}' to match model."
)
task = model.task
# Mode
if mode in {"predict", "track"} and "source" not in overrides:
overrides["source"] = DEFAULT_CFG.source or ASSETS
LOGGER.warning(f"WARNING ⚠️ 'source' argument is missing. Using default 'source={overrides['source']}'.")
elif mode in {"train", "val"}:
if "data" not in overrides and "resume" not in overrides:
overrides["data"] = DEFAULT_CFG.data or TASK2DATA.get(task or DEFAULT_CFG.task, DEFAULT_CFG.data)
LOGGER.warning(f"WARNING ⚠️ 'data' argument is missing. Using default 'data={overrides['data']}'.")
elif mode == "export":
if "format" not in overrides:
overrides["format"] = DEFAULT_CFG.format or "torchscript"
LOGGER.warning(f"WARNING ⚠️ 'format' argument is missing. Using default 'format={overrides['format']}'.")
# Run command in python
getattr(model, mode)(**overrides) # default args from model
# Show help
LOGGER.info(f"💡 Learn more at https://docs.ultralytics.com/modes/{mode}")
# Special modes --------------------------------------------------------------------------------------------------------
def copy_default_cfg():
"""
Copies the default configuration file and creates a new one with '_copy' appended to its name.
This function duplicates the existing default configuration file (DEFAULT_CFG_PATH) and saves it
with '_copy' appended to its name in the current working directory. It provides a convenient way
to create a custom configuration file based on the default settings.
Examples:
>>> copy_default_cfg()
# Output: default.yaml copied to /path/to/current/directory/default_copy.yaml
# Example YOLO command with this new custom cfg:
# yolo cfg='/path/to/current/directory/default_copy.yaml' imgsz=320 batch=8
Notes:
- The new configuration file is created in the current working directory.
- After copying, the function prints a message with the new file's location and an example
YOLO command demonstrating how to use the new configuration file.
- This function is useful for users who want to modify the default configuration without
altering the original file.
"""
new_file = Path.cwd() / DEFAULT_CFG_PATH.name.replace(".yaml", "_copy.yaml")
shutil.copy2(DEFAULT_CFG_PATH, new_file)
LOGGER.info(
f"{DEFAULT_CFG_PATH} copied to {new_file}\n"
f"Example YOLO command with this new custom cfg:\n yolo cfg='{new_file}' imgsz=320 batch=8"
)
if __name__ == "__main__":
# Example: entrypoint(debug='yolo predict model=yolov8n.pt')
entrypoint(debug="")