1137 lines
51 KiB
Python
1137 lines
51 KiB
Python
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
|
|
import inspect
|
|
from pathlib import Path
|
|
from typing import List, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
|
from ultralytics.engine.results import Results
|
|
from ultralytics.hub import HUB_WEB_ROOT, HUBTrainingSession
|
|
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
|
from ultralytics.utils import (
|
|
ARGV,
|
|
ASSETS,
|
|
DEFAULT_CFG_DICT,
|
|
LOGGER,
|
|
RANK,
|
|
callbacks,
|
|
checks,
|
|
emojis,
|
|
yaml_load,
|
|
)
|
|
|
|
|
|
class Model(nn.Module):
|
|
"""
|
|
A base class for implementing YOLO models, unifying APIs across different model types.
|
|
|
|
This class provides a common interface for various operations related to YOLO models, such as training,
|
|
validation, prediction, exporting, and benchmarking. It handles different types of models, including those
|
|
loaded from local files, Ultralytics HUB, or Triton Server.
|
|
|
|
Attributes:
|
|
callbacks (Dict): A dictionary of callback functions for various events during model operations.
|
|
predictor (BasePredictor): The predictor object used for making predictions.
|
|
model (nn.Module): The underlying PyTorch model.
|
|
trainer (BaseTrainer): The trainer object used for training the model.
|
|
ckpt (Dict): The checkpoint data if the model is loaded from a *.pt file.
|
|
cfg (str): The configuration of the model if loaded from a *.yaml file.
|
|
ckpt_path (str): The path to the checkpoint file.
|
|
overrides (Dict): A dictionary of overrides for model configuration.
|
|
metrics (Dict): The latest training/validation metrics.
|
|
session (HUBTrainingSession): The Ultralytics HUB session, if applicable.
|
|
task (str): The type of task the model is intended for.
|
|
model_name (str): The name of the model.
|
|
|
|
Methods:
|
|
__call__: Alias for the predict method, enabling the model instance to be callable.
|
|
_new: Initializes a new model based on a configuration file.
|
|
_load: Loads a model from a checkpoint file.
|
|
_check_is_pytorch_model: Ensures that the model is a PyTorch model.
|
|
reset_weights: Resets the model's weights to their initial state.
|
|
load: Loads model weights from a specified file.
|
|
save: Saves the current state of the model to a file.
|
|
info: Logs or returns information about the model.
|
|
fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference.
|
|
predict: Performs object detection predictions.
|
|
track: Performs object tracking.
|
|
val: Validates the model on a dataset.
|
|
benchmark: Benchmarks the model on various export formats.
|
|
export: Exports the model to different formats.
|
|
train: Trains the model on a dataset.
|
|
tune: Performs hyperparameter tuning.
|
|
_apply: Applies a function to the model's tensors.
|
|
add_callback: Adds a callback function for an event.
|
|
clear_callback: Clears all callbacks for an event.
|
|
reset_callbacks: Resets all callbacks to their default functions.
|
|
|
|
Examples:
|
|
>>> from ultralytics import YOLO
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.predict('image.jpg')
|
|
>>> model.train(data='coco128.yaml', epochs=3)
|
|
>>> metrics = model.val()
|
|
>>> model.export(format='onnx')
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model: Union[str, Path] = "yolov8n.pt",
|
|
task: str = None,
|
|
verbose: bool = False,
|
|
) -> None:
|
|
"""
|
|
Initializes a new instance of the YOLO model class.
|
|
|
|
This constructor sets up the model based on the provided model path or name. It handles various types of
|
|
model sources, including local files, Ultralytics HUB models, and Triton Server models. The method
|
|
initializes several important attributes of the model and prepares it for operations like training,
|
|
prediction, or export.
|
|
|
|
Args:
|
|
model (Union[str, Path]): Path or name of the model to load or create. Can be a local file path, a
|
|
model name from Ultralytics HUB, or a Triton Server model.
|
|
task (str | None): The task type associated with the YOLO model, specifying its application domain.
|
|
verbose (bool): If True, enables verbose output during the model's initialization and subsequent
|
|
operations.
|
|
|
|
Raises:
|
|
FileNotFoundError: If the specified model file does not exist or is inaccessible.
|
|
ValueError: If the model file or configuration is invalid or unsupported.
|
|
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
|
|
|
|
Examples:
|
|
>>> model = Model("yolov8n.pt")
|
|
>>> model = Model("path/to/model.yaml", task="detect")
|
|
>>> model = Model("hub_model", verbose=True)
|
|
"""
|
|
super().__init__()
|
|
self.callbacks = callbacks.get_default_callbacks()
|
|
self.predictor = None # reuse predictor
|
|
self.model = None # model object
|
|
self.trainer = None # trainer object
|
|
self.ckpt = None # if loaded from *.pt
|
|
self.cfg = None # if loaded from *.yaml
|
|
self.ckpt_path = None
|
|
self.overrides = {} # overrides for trainer object
|
|
self.metrics = None # validation/training metrics
|
|
self.session = None # HUB session
|
|
self.task = task # task type
|
|
model = str(model).strip()
|
|
|
|
# Check if Ultralytics HUB model from https://hub.ultralytics.com
|
|
if self.is_hub_model(model):
|
|
# Fetch model from HUB
|
|
checks.check_requirements("hub-sdk>=0.0.8")
|
|
self.session = HUBTrainingSession.create_session(model)
|
|
model = self.session.model_file
|
|
|
|
# Check if Triton Server model
|
|
elif self.is_triton_model(model):
|
|
self.model_name = self.model = model
|
|
return
|
|
|
|
# Load or create new YOLO model
|
|
if Path(model).suffix in {".yaml", ".yml"}:
|
|
self._new(model, task=task, verbose=verbose)
|
|
else:
|
|
self._load(model, task=task)
|
|
|
|
def __call__(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
Alias for the predict method, enabling the model instance to be callable for predictions.
|
|
|
|
This method simplifies the process of making predictions by allowing the model instance to be called
|
|
directly with the required arguments.
|
|
|
|
Args:
|
|
source (str | Path | int | PIL.Image | np.ndarray | torch.Tensor | List | Tuple): The source of
|
|
the image(s) to make predictions on. Can be a file path, URL, PIL image, numpy array, PyTorch
|
|
tensor, or a list/tuple of these.
|
|
stream (bool): If True, treat the input source as a continuous stream for predictions.
|
|
**kwargs (Any): Additional keyword arguments to configure the prediction process.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
|
|
Results object.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model('https://ultralytics.com/images/bus.jpg')
|
|
>>> for r in results:
|
|
... print(f"Detected {len(r)} objects in image")
|
|
"""
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
@staticmethod
|
|
def is_triton_model(model: str) -> bool:
|
|
"""
|
|
Checks if the given model string is a Triton Server URL.
|
|
|
|
This static method determines whether the provided model string represents a valid Triton Server URL by
|
|
parsing its components using urllib.parse.urlsplit().
|
|
|
|
Args:
|
|
model (str): The model string to be checked.
|
|
|
|
Returns:
|
|
(bool): True if the model string is a valid Triton Server URL, False otherwise.
|
|
|
|
Examples:
|
|
>>> Model.is_triton_model('http://localhost:8000/v2/models/yolov8n')
|
|
True
|
|
>>> Model.is_triton_model('yolov8n.pt')
|
|
False
|
|
"""
|
|
from urllib.parse import urlsplit
|
|
|
|
url = urlsplit(model)
|
|
return url.netloc and url.path and url.scheme in {"http", "grpc"}
|
|
|
|
@staticmethod
|
|
def is_hub_model(model: str) -> bool:
|
|
"""
|
|
Check if the provided model is an Ultralytics HUB model.
|
|
|
|
This static method determines whether the given model string represents a valid Ultralytics HUB model
|
|
identifier. It checks for three possible formats: a full HUB URL, an API key and model ID combination,
|
|
or a standalone model ID.
|
|
|
|
Args:
|
|
model (str): The model identifier to check. This can be a URL, an API key and model ID
|
|
combination, or a standalone model ID.
|
|
|
|
Returns:
|
|
(bool): True if the model is a valid Ultralytics HUB model, False otherwise.
|
|
|
|
Examples:
|
|
>>> Model.is_hub_model("https://hub.ultralytics.com/models/example_model")
|
|
True
|
|
>>> Model.is_hub_model("api_key_example_model_id")
|
|
True
|
|
>>> Model.is_hub_model("example_model_id")
|
|
True
|
|
>>> Model.is_hub_model("not_a_hub_model.pt")
|
|
False
|
|
"""
|
|
return any(
|
|
(
|
|
model.startswith(f"{HUB_WEB_ROOT}/models/"), # i.e. https://hub.ultralytics.com/models/MODEL_ID
|
|
[len(x) for x in model.split("_")] == [42, 20], # APIKEY_MODEL
|
|
len(model) == 20 and not Path(model).exists() and all(x not in model for x in "./\\"), # MODEL
|
|
)
|
|
)
|
|
|
|
def _new(self, cfg: str, task=None, model=None, verbose=False) -> None:
|
|
"""
|
|
Initializes a new model and infers the task type from the model definitions.
|
|
|
|
This method creates a new model instance based on the provided configuration file. It loads the model
|
|
configuration, infers the task type if not specified, and initializes the model using the appropriate
|
|
class from the task map.
|
|
|
|
Args:
|
|
cfg (str): Path to the model configuration file in YAML format.
|
|
task (str | None): The specific task for the model. If None, it will be inferred from the config.
|
|
model (torch.nn.Module | None): A custom model instance. If provided, it will be used instead of creating
|
|
a new one.
|
|
verbose (bool): If True, displays model information during loading.
|
|
|
|
Raises:
|
|
ValueError: If the configuration file is invalid or the task cannot be inferred.
|
|
ImportError: If the required dependencies for the specified task are not installed.
|
|
|
|
Examples:
|
|
>>> model = Model()
|
|
>>> model._new('yolov8n.yaml', task='detect', verbose=True)
|
|
"""
|
|
cfg_dict = yaml_model_load(cfg)
|
|
self.cfg = cfg
|
|
self.task = task or guess_model_task(cfg_dict)
|
|
self.model = (model or self._smart_load("model"))(cfg_dict, verbose=verbose and RANK == -1) # build model
|
|
self.overrides["model"] = self.cfg
|
|
self.overrides["task"] = self.task
|
|
|
|
# Below added to allow export from YAMLs
|
|
self.model.args = {**DEFAULT_CFG_DICT, **self.overrides} # combine default and model args (prefer model args)
|
|
self.model.task = self.task
|
|
self.model_name = cfg
|
|
|
|
def _load(self, weights: str, task=None) -> None:
|
|
"""
|
|
Loads a model from a checkpoint file or initializes it from a weights file.
|
|
|
|
This method handles loading models from either .pt checkpoint files or other weight file formats. It sets
|
|
up the model, task, and related attributes based on the loaded weights.
|
|
|
|
Args:
|
|
weights (str): Path to the model weights file to be loaded.
|
|
task (str | None): The task associated with the model. If None, it will be inferred from the model.
|
|
|
|
Raises:
|
|
FileNotFoundError: If the specified weights file does not exist or is inaccessible.
|
|
ValueError: If the weights file format is unsupported or invalid.
|
|
|
|
Examples:
|
|
>>> model = Model()
|
|
>>> model._load('yolov8n.pt')
|
|
>>> model._load('path/to/weights.pth', task='detect')
|
|
"""
|
|
if weights.lower().startswith(("https://", "http://", "rtsp://", "rtmp://", "tcp://")):
|
|
weights = checks.check_file(weights) # automatically download and return local filename
|
|
weights = checks.check_model_file_from_stem(weights) # add suffix, i.e. yolov8n -> yolov8n.pt
|
|
|
|
if Path(weights).suffix == ".pt":
|
|
self.model, self.ckpt = attempt_load_one_weight(weights)
|
|
self.task = self.model.args["task"]
|
|
self.overrides = self.model.args = self._reset_ckpt_args(self.model.args)
|
|
self.ckpt_path = self.model.pt_path
|
|
else:
|
|
weights = checks.check_file(weights) # runs in all cases, not redundant with above call
|
|
self.model, self.ckpt = weights, None
|
|
self.task = task or guess_model_task(weights)
|
|
self.ckpt_path = weights
|
|
self.overrides["model"] = weights
|
|
self.overrides["task"] = self.task
|
|
self.model_name = weights
|
|
|
|
def _check_is_pytorch_model(self) -> None:
|
|
"""
|
|
Checks if the model is a PyTorch model and raises a TypeError if it's not.
|
|
|
|
This method verifies that the model is either a PyTorch module or a .pt file. It's used to ensure that
|
|
certain operations that require a PyTorch model are only performed on compatible model types.
|
|
|
|
Raises:
|
|
TypeError: If the model is not a PyTorch module or a .pt file. The error message provides detailed
|
|
information about supported model formats and operations.
|
|
|
|
Examples:
|
|
>>> model = Model("yolov8n.pt")
|
|
>>> model._check_is_pytorch_model() # No error raised
|
|
>>> model = Model("yolov8n.onnx")
|
|
>>> model._check_is_pytorch_model() # Raises TypeError
|
|
"""
|
|
pt_str = isinstance(self.model, (str, Path)) and Path(self.model).suffix == ".pt"
|
|
pt_module = isinstance(self.model, nn.Module)
|
|
if not (pt_module or pt_str):
|
|
raise TypeError(
|
|
f"model='{self.model}' should be a *.pt PyTorch model to run this method, but is a different format. "
|
|
f"PyTorch models can train, val, predict and export, i.e. 'model.train(data=...)', but exported "
|
|
f"formats like ONNX, TensorRT etc. only support 'predict' and 'val' modes, "
|
|
f"i.e. 'yolo predict model=yolov8n.onnx'.\nTo run CUDA or MPS inference please pass the device "
|
|
f"argument directly in your inference command, i.e. 'model.predict(source=..., device=0)'"
|
|
)
|
|
|
|
def reset_weights(self) -> "Model":
|
|
"""
|
|
Resets the model's weights to their initial state.
|
|
|
|
This method iterates through all modules in the model and resets their parameters if they have a
|
|
'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True,
|
|
enabling them to be updated during training.
|
|
|
|
Returns:
|
|
(Model): The instance of the class with reset weights.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = Model('yolov8n.pt')
|
|
>>> model.reset_weights()
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
for m in self.model.modules():
|
|
if hasattr(m, "reset_parameters"):
|
|
m.reset_parameters()
|
|
for p in self.model.parameters():
|
|
p.requires_grad = True
|
|
return self
|
|
|
|
def load(self, weights: Union[str, Path] = "yolov8n.pt") -> "Model":
|
|
"""
|
|
Loads parameters from the specified weights file into the model.
|
|
|
|
This method supports loading weights from a file or directly from a weights object. It matches parameters by
|
|
name and shape and transfers them to the model.
|
|
|
|
Args:
|
|
weights (Union[str, Path]): Path to the weights file or a weights object.
|
|
|
|
Returns:
|
|
(Model): The instance of the class with loaded weights.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = Model()
|
|
>>> model.load('yolov8n.pt')
|
|
>>> model.load(Path('path/to/weights.pt'))
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if isinstance(weights, (str, Path)):
|
|
weights, self.ckpt = attempt_load_one_weight(weights)
|
|
self.model.load(weights)
|
|
return self
|
|
|
|
def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None:
|
|
"""
|
|
Saves the current model state to a file.
|
|
|
|
This method exports the model's checkpoint (ckpt) to the specified filename. It includes metadata such as
|
|
the date, Ultralytics version, license information, and a link to the documentation.
|
|
|
|
Args:
|
|
filename (Union[str, Path]): The name of the file to save the model to.
|
|
use_dill (bool): Whether to try using dill for serialization if available.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = Model('yolov8n.pt')
|
|
>>> model.save('my_model.pt')
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from copy import deepcopy
|
|
from datetime import datetime
|
|
|
|
from ultralytics import __version__
|
|
|
|
updates = {
|
|
"model": deepcopy(self.model).half() if isinstance(self.model, nn.Module) else self.model,
|
|
"date": datetime.now().isoformat(),
|
|
"version": __version__,
|
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
"docs": "https://docs.ultralytics.com",
|
|
}
|
|
torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill)
|
|
|
|
def info(self, detailed: bool = False, verbose: bool = True):
|
|
"""
|
|
Logs or returns model information.
|
|
|
|
This method provides an overview or detailed information about the model, depending on the arguments
|
|
passed. It can control the verbosity of the output and return the information as a list.
|
|
|
|
Args:
|
|
detailed (bool): If True, shows detailed information about the model layers and parameters.
|
|
verbose (bool): If True, prints the information. If False, returns the information as a list.
|
|
|
|
Returns:
|
|
(List[str]): A list of strings containing various types of information about the model, including
|
|
model summary, layer details, and parameter counts. Empty if verbose is True.
|
|
|
|
Raises:
|
|
TypeError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = Model('yolov8n.pt')
|
|
>>> model.info() # Prints model summary
|
|
>>> info_list = model.info(detailed=True, verbose=False) # Returns detailed info as a list
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
return self.model.info(detailed=detailed, verbose=verbose)
|
|
|
|
def fuse(self):
|
|
"""
|
|
Fuses Conv2d and BatchNorm2d layers in the model for optimized inference.
|
|
|
|
This method iterates through the model's modules and fuses consecutive Conv2d and BatchNorm2d layers
|
|
into a single layer. This fusion can significantly improve inference speed by reducing the number of
|
|
operations and memory accesses required during forward passes.
|
|
|
|
The fusion process typically involves folding the BatchNorm2d parameters (mean, variance, weight, and
|
|
bias) into the preceding Conv2d layer's weights and biases. This results in a single Conv2d layer that
|
|
performs both convolution and normalization in one step.
|
|
|
|
Raises:
|
|
TypeError: If the model is not a PyTorch nn.Module.
|
|
|
|
Examples:
|
|
>>> model = Model("yolov8n.pt")
|
|
>>> model.fuse()
|
|
>>> # Model is now fused and ready for optimized inference
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
self.model.fuse()
|
|
|
|
def embed(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
**kwargs,
|
|
) -> list:
|
|
"""
|
|
Generates image embeddings based on the provided source.
|
|
|
|
This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image
|
|
source. It allows customization of the embedding process through various keyword arguments.
|
|
|
|
Args:
|
|
source (str | Path | int | List | Tuple | np.ndarray | torch.Tensor): The source of the image for
|
|
generating embeddings. Can be a file path, URL, PIL image, numpy array, etc.
|
|
stream (bool): If True, predictions are streamed.
|
|
**kwargs (Any): Additional keyword arguments for configuring the embedding process.
|
|
|
|
Returns:
|
|
(List[torch.Tensor]): A list containing the image embeddings.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> image = 'https://ultralytics.com/images/bus.jpg'
|
|
>>> embeddings = model.embed(image)
|
|
>>> print(embeddings[0].shape)
|
|
"""
|
|
if not kwargs.get("embed"):
|
|
kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
|
|
return self.predict(source, stream, **kwargs)
|
|
|
|
def predict(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
predictor=None,
|
|
**kwargs,
|
|
) -> List[Results]:
|
|
"""
|
|
Performs predictions on the given image source using the YOLO model.
|
|
|
|
This method facilitates the prediction process, allowing various configurations through keyword arguments.
|
|
It supports predictions with custom predictors or the default predictor method. The method handles different
|
|
types of image sources and can operate in a streaming mode.
|
|
|
|
Args:
|
|
source (str | Path | int | List[str] | List[Path] | List[int] | np.ndarray | torch.Tensor): The source
|
|
of the image(s) to make predictions on. Accepts various types including file paths, URLs, PIL
|
|
images, numpy arrays, and torch tensors.
|
|
stream (bool): If True, treats the input source as a continuous stream for predictions.
|
|
predictor (BasePredictor | None): An instance of a custom predictor class for making predictions.
|
|
If None, the method uses a default predictor.
|
|
**kwargs (Any): Additional keyword arguments for configuring the prediction process.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of prediction results, each encapsulated in a
|
|
Results object.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.predict(source='path/to/image.jpg', conf=0.25)
|
|
>>> for r in results:
|
|
... print(r.boxes.data) # print detection bounding boxes
|
|
|
|
Notes:
|
|
- If 'source' is not provided, it defaults to the ASSETS constant with a warning.
|
|
- The method sets up a new predictor if not already present and updates its arguments with each call.
|
|
- For SAM-type models, 'prompts' can be passed as a keyword argument.
|
|
"""
|
|
if source is None:
|
|
source = ASSETS
|
|
LOGGER.warning(f"WARNING ⚠️ 'source' is missing. Using 'source={source}'.")
|
|
|
|
is_cli = (ARGV[0].endswith("yolo") or ARGV[0].endswith("ultralytics")) and any(
|
|
x in ARGV for x in ("predict", "track", "mode=predict", "mode=track")
|
|
)
|
|
|
|
custom = {"conf": 0.25, "batch": 1, "save": is_cli, "mode": "predict"} # method defaults
|
|
args = {**self.overrides, **custom, **kwargs} # highest priority args on the right
|
|
prompts = args.pop("prompts", None) # for SAM-type models
|
|
|
|
if not self.predictor:
|
|
self.predictor = predictor or self._smart_load("predictor")(overrides=args, _callbacks=self.callbacks)
|
|
self.predictor.setup_model(model=self.model, verbose=is_cli)
|
|
else: # only update args if predictor is already setup
|
|
self.predictor.args = get_cfg(self.predictor.args, args)
|
|
if "project" in args or "name" in args:
|
|
self.predictor.save_dir = get_save_dir(self.predictor.args)
|
|
if prompts and hasattr(self.predictor, "set_prompts"): # for SAM-type models
|
|
self.predictor.set_prompts(prompts)
|
|
return self.predictor.predict_cli(source=source) if is_cli else self.predictor(source=source, stream=stream)
|
|
|
|
def track(
|
|
self,
|
|
source: Union[str, Path, int, list, tuple, np.ndarray, torch.Tensor] = None,
|
|
stream: bool = False,
|
|
persist: bool = False,
|
|
**kwargs,
|
|
) -> List[Results]:
|
|
"""
|
|
Conducts object tracking on the specified input source using the registered trackers.
|
|
|
|
This method performs object tracking using the model's predictors and optionally registered trackers. It handles
|
|
various input sources such as file paths or video streams, and supports customization through keyword arguments.
|
|
The method registers trackers if not already present and can persist them between calls.
|
|
|
|
Args:
|
|
source (Union[str, Path, int, List, Tuple, np.ndarray, torch.Tensor], optional): Input source for object
|
|
tracking. Can be a file path, URL, or video stream.
|
|
stream (bool): If True, treats the input source as a continuous video stream. Defaults to False.
|
|
persist (bool): If True, persists trackers between different calls to this method. Defaults to False.
|
|
**kwargs (Any): Additional keyword arguments for configuring the tracking process.
|
|
|
|
Returns:
|
|
(List[ultralytics.engine.results.Results]): A list of tracking results, each a Results object.
|
|
|
|
Raises:
|
|
AttributeError: If the predictor does not have registered trackers.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.track(source='path/to/video.mp4', show=True)
|
|
>>> for r in results:
|
|
... print(r.boxes.id) # print tracking IDs
|
|
|
|
Notes:
|
|
- This method sets a default confidence threshold of 0.1 for ByteTrack-based tracking.
|
|
- The tracking mode is explicitly set in the keyword arguments.
|
|
- Batch size is set to 1 for tracking in videos.
|
|
"""
|
|
if not hasattr(self.predictor, "trackers"):
|
|
from ultralytics.trackers import register_tracker
|
|
|
|
register_tracker(self, persist)
|
|
kwargs["conf"] = kwargs.get("conf") or 0.1 # ByteTrack-based method needs low confidence predictions as input
|
|
kwargs["batch"] = kwargs.get("batch") or 1 # batch-size 1 for tracking in videos
|
|
kwargs["mode"] = "track"
|
|
return self.predict(source=source, stream=stream, **kwargs)
|
|
|
|
def val(
|
|
self,
|
|
validator=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Validates the model using a specified dataset and validation configuration.
|
|
|
|
This method facilitates the model validation process, allowing for customization through various settings. It
|
|
supports validation with a custom validator or the default validation approach. The method combines default
|
|
configurations, method-specific defaults, and user-provided arguments to configure the validation process.
|
|
|
|
Args:
|
|
validator (ultralytics.engine.validator.BaseValidator | None): An instance of a custom validator class for
|
|
validating the model.
|
|
**kwargs (Any): Arbitrary keyword arguments for customizing the validation process.
|
|
|
|
Returns:
|
|
(ultralytics.utils.metrics.DetMetrics): Validation metrics obtained from the validation process.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.val(data='coco128.yaml', imgsz=640)
|
|
>>> print(results.box.map) # Print mAP50-95
|
|
"""
|
|
custom = {"rect": True} # method defaults
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
|
|
|
|
validator = (validator or self._smart_load("validator"))(args=args, _callbacks=self.callbacks)
|
|
validator(model=self.model)
|
|
self.metrics = validator.metrics
|
|
return validator.metrics
|
|
|
|
def benchmark(
|
|
self,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Benchmarks the model across various export formats to evaluate performance.
|
|
|
|
This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc.
|
|
It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is
|
|
configured using a combination of default configuration values, model-specific arguments, method-specific
|
|
defaults, and any additional user-provided keyword arguments.
|
|
|
|
Args:
|
|
**kwargs (Any): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
|
|
default configurations, model-specific arguments, and method defaults. Common options include:
|
|
- data (str): Path to the dataset for benchmarking.
|
|
- imgsz (int | List[int]): Image size for benchmarking.
|
|
- half (bool): Whether to use half-precision (FP16) mode.
|
|
- int8 (bool): Whether to use int8 precision mode.
|
|
- device (str): Device to run the benchmark on (e.g., 'cpu', 'cuda').
|
|
- verbose (bool): Whether to print detailed benchmark information.
|
|
|
|
Returns:
|
|
(Dict): A dictionary containing the results of the benchmarking process, including metrics for
|
|
different export formats.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.benchmark(data='coco8.yaml', imgsz=640, half=True)
|
|
>>> print(results)
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from ultralytics.utils.benchmarks import benchmark
|
|
|
|
custom = {"verbose": False} # method defaults
|
|
args = {**DEFAULT_CFG_DICT, **self.model.args, **custom, **kwargs, "mode": "benchmark"}
|
|
return benchmark(
|
|
model=self,
|
|
data=kwargs.get("data"), # if no 'data' argument passed set data=None for default datasets
|
|
imgsz=args["imgsz"],
|
|
half=args["half"],
|
|
int8=args["int8"],
|
|
device=args["device"],
|
|
verbose=kwargs.get("verbose"),
|
|
)
|
|
|
|
def export(
|
|
self,
|
|
**kwargs,
|
|
) -> str:
|
|
"""
|
|
Exports the model to a different format suitable for deployment.
|
|
|
|
This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment
|
|
purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method
|
|
defaults, and any additional arguments provided.
|
|
|
|
Args:
|
|
**kwargs (Dict): Arbitrary keyword arguments to customize the export process. These are combined with
|
|
the model's overrides and method defaults. Common arguments include:
|
|
format (str): Export format (e.g., 'onnx', 'engine', 'coreml').
|
|
half (bool): Export model in half-precision.
|
|
int8 (bool): Export model in int8 precision.
|
|
device (str): Device to run the export on.
|
|
workspace (int): Maximum memory workspace size for TensorRT engines.
|
|
nms (bool): Add Non-Maximum Suppression (NMS) module to model.
|
|
simplify (bool): Simplify ONNX model.
|
|
|
|
Returns:
|
|
(str): The path to the exported model file.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
ValueError: If an unsupported export format is specified.
|
|
RuntimeError: If the export process fails due to errors.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> model.export(format='onnx', dynamic=True, simplify=True)
|
|
'path/to/exported/model.onnx'
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
from .exporter import Exporter
|
|
|
|
custom = {
|
|
"imgsz": self.model.args["imgsz"],
|
|
"batch": 1,
|
|
"data": None,
|
|
"device": None, # reset to avoid multi-GPU errors
|
|
"verbose": False,
|
|
} # method defaults
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "export"} # highest priority args on the right
|
|
return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model)
|
|
|
|
def train(
|
|
self,
|
|
trainer=None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Trains the model using the specified dataset and training configuration.
|
|
|
|
This method facilitates model training with a range of customizable settings. It supports training with a
|
|
custom trainer or the default training approach. The method handles scenarios such as resuming training
|
|
from a checkpoint, integrating with Ultralytics HUB, and updating model and configuration after training.
|
|
|
|
When using Ultralytics HUB, if the session has a loaded model, the method prioritizes HUB training
|
|
arguments and warns if local arguments are provided. It checks for pip updates and combines default
|
|
configurations, method-specific defaults, and user-provided arguments to configure the training process.
|
|
|
|
Args:
|
|
trainer (BaseTrainer | None): Custom trainer instance for model training. If None, uses default.
|
|
**kwargs (Any): Arbitrary keyword arguments for training configuration. Common options include:
|
|
data (str): Path to dataset configuration file.
|
|
epochs (int): Number of training epochs.
|
|
batch_size (int): Batch size for training.
|
|
imgsz (int): Input image size.
|
|
device (str): Device to run training on (e.g., 'cuda', 'cpu').
|
|
workers (int): Number of worker threads for data loading.
|
|
optimizer (str): Optimizer to use for training.
|
|
lr0 (float): Initial learning rate.
|
|
patience (int): Epochs to wait for no observable improvement for early stopping of training.
|
|
|
|
Returns:
|
|
(Dict | None): Training metrics if available and training is successful; otherwise, None.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
PermissionError: If there is a permission issue with the HUB session.
|
|
ModuleNotFoundError: If the HUB SDK is not installed.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.train(data='coco128.yaml', epochs=3)
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
|
|
if any(kwargs):
|
|
LOGGER.warning("WARNING ⚠️ using HUB training arguments, ignoring local training arguments.")
|
|
kwargs = self.session.train_args # overwrite kwargs
|
|
|
|
checks.check_pip_update_available()
|
|
|
|
overrides = yaml_load(checks.check_yaml(kwargs["cfg"])) if kwargs.get("cfg") else self.overrides
|
|
custom = {
|
|
# NOTE: handle the case when 'cfg' includes 'data'.
|
|
"data": overrides.get("data") or DEFAULT_CFG_DICT["data"] or TASK2DATA[self.task],
|
|
"model": self.overrides["model"],
|
|
"task": self.task,
|
|
} # method defaults
|
|
args = {**overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
|
|
if args.get("resume"):
|
|
args["resume"] = self.ckpt_path
|
|
|
|
self.trainer = (trainer or self._smart_load("trainer"))(overrides=args, _callbacks=self.callbacks)
|
|
if not args.get("resume"): # manually set model only if not resuming
|
|
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
|
|
self.model = self.trainer.model
|
|
|
|
self.trainer.hub_session = self.session # attach optional HUB session
|
|
self.trainer.train()
|
|
# Update model and cfg after training
|
|
if RANK in {-1, 0}:
|
|
ckpt = self.trainer.best if self.trainer.best.exists() else self.trainer.last
|
|
self.model, _ = attempt_load_one_weight(ckpt)
|
|
self.overrides = self.model.args
|
|
self.metrics = getattr(self.trainer.validator, "metrics", None) # TODO: no metrics returned by DDP
|
|
return self.metrics
|
|
|
|
def tune(
|
|
self,
|
|
use_ray=False,
|
|
iterations=10,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Conducts hyperparameter tuning for the model, with an option to use Ray Tune.
|
|
|
|
This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method.
|
|
When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module.
|
|
Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and
|
|
custom arguments to configure the tuning process.
|
|
|
|
Args:
|
|
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
|
|
iterations (int): The number of tuning iterations to perform. Defaults to 10.
|
|
*args (List): Variable length argument list for additional arguments.
|
|
**kwargs (Dict): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
|
|
|
|
Returns:
|
|
(Dict): A dictionary containing the results of the hyperparameter search.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> results = model.tune(use_ray=True, iterations=20)
|
|
>>> print(results)
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
if use_ray:
|
|
from ultralytics.utils.tuner import run_ray_tune
|
|
|
|
return run_ray_tune(self, max_samples=iterations, *args, **kwargs)
|
|
else:
|
|
from .tuner import Tuner
|
|
|
|
custom = {} # method defaults
|
|
args = {**self.overrides, **custom, **kwargs, "mode": "train"} # highest priority args on the right
|
|
return Tuner(args=args, _callbacks=self.callbacks)(model=self, iterations=iterations)
|
|
|
|
def _apply(self, fn) -> "Model":
|
|
"""
|
|
Applies a function to model tensors that are not parameters or registered buffers.
|
|
|
|
This method extends the functionality of the parent class's _apply method by additionally resetting the
|
|
predictor and updating the device in the model's overrides. It's typically used for operations like
|
|
moving the model to a different device or changing its precision.
|
|
|
|
Args:
|
|
fn (Callable): A function to be applied to the model's tensors. This is typically a method like
|
|
to(), cpu(), cuda(), half(), or float().
|
|
|
|
Returns:
|
|
(Model): The model instance with the function applied and updated attributes.
|
|
|
|
Raises:
|
|
AssertionError: If the model is not a PyTorch model.
|
|
|
|
Examples:
|
|
>>> model = Model("yolov8n.pt")
|
|
>>> model = model._apply(lambda t: t.cuda()) # Move model to GPU
|
|
"""
|
|
self._check_is_pytorch_model()
|
|
self = super()._apply(fn) # noqa
|
|
self.predictor = None # reset predictor as device may have changed
|
|
self.overrides["device"] = self.device # was str(self.device) i.e. device(type='cuda', index=0) -> 'cuda:0'
|
|
return self
|
|
|
|
@property
|
|
def names(self) -> list:
|
|
"""
|
|
Retrieves the class names associated with the loaded model.
|
|
|
|
This property returns the class names if they are defined in the model. It checks the class names for validity
|
|
using the 'check_class_names' function from the ultralytics.nn.autobackend module. If the predictor is not
|
|
initialized, it sets it up before retrieving the names.
|
|
|
|
Returns:
|
|
(List[str]): A list of class names associated with the model.
|
|
|
|
Raises:
|
|
AttributeError: If the model or predictor does not have a 'names' attribute.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> print(model.names)
|
|
['person', 'bicycle', 'car', ...]
|
|
"""
|
|
from ultralytics.nn.autobackend import check_class_names
|
|
|
|
if hasattr(self.model, "names"):
|
|
return check_class_names(self.model.names)
|
|
if not self.predictor: # export formats will not have predictor defined until predict() is called
|
|
self.predictor = self._smart_load("predictor")(overrides=self.overrides, _callbacks=self.callbacks)
|
|
self.predictor.setup_model(model=self.model, verbose=False)
|
|
return self.predictor.model.names
|
|
|
|
@property
|
|
def device(self) -> torch.device:
|
|
"""
|
|
Retrieves the device on which the model's parameters are allocated.
|
|
|
|
This property determines the device (CPU or GPU) where the model's parameters are currently stored. It is
|
|
applicable only to models that are instances of nn.Module.
|
|
|
|
Returns:
|
|
(torch.device): The device (CPU/GPU) of the model.
|
|
|
|
Raises:
|
|
AttributeError: If the model is not a PyTorch nn.Module instance.
|
|
|
|
Examples:
|
|
>>> model = YOLO("yolov8n.pt")
|
|
>>> print(model.device)
|
|
device(type='cuda', index=0) # if CUDA is available
|
|
>>> model = model.to("cpu")
|
|
>>> print(model.device)
|
|
device(type='cpu')
|
|
"""
|
|
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
|
|
|
|
@property
|
|
def transforms(self):
|
|
"""
|
|
Retrieves the transformations applied to the input data of the loaded model.
|
|
|
|
This property returns the transformations if they are defined in the model. The transforms
|
|
typically include preprocessing steps like resizing, normalization, and data augmentation
|
|
that are applied to input data before it is fed into the model.
|
|
|
|
Returns:
|
|
(object | None): The transform object of the model if available, otherwise None.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> transforms = model.transforms
|
|
>>> if transforms:
|
|
... print(f"Model transforms: {transforms}")
|
|
... else:
|
|
... print("No transforms defined for this model.")
|
|
"""
|
|
return self.model.transforms if hasattr(self.model, "transforms") else None
|
|
|
|
def add_callback(self, event: str, func) -> None:
|
|
"""
|
|
Adds a callback function for a specified event.
|
|
|
|
This method allows registering custom callback functions that are triggered on specific events during
|
|
model operations such as training or inference. Callbacks provide a way to extend and customize the
|
|
behavior of the model at various stages of its lifecycle.
|
|
|
|
Args:
|
|
event (str): The name of the event to attach the callback to. Must be a valid event name recognized
|
|
by the Ultralytics framework.
|
|
func (Callable): The callback function to be registered. This function will be called when the
|
|
specified event occurs.
|
|
|
|
Raises:
|
|
ValueError: If the event name is not recognized or is invalid.
|
|
|
|
Examples:
|
|
>>> def on_train_start(trainer):
|
|
... print("Training is starting!")
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> model.add_callback("on_train_start", on_train_start)
|
|
>>> model.train(data='coco128.yaml', epochs=1)
|
|
"""
|
|
self.callbacks[event].append(func)
|
|
|
|
def clear_callback(self, event: str) -> None:
|
|
"""
|
|
Clears all callback functions registered for a specified event.
|
|
|
|
This method removes all custom and default callback functions associated with the given event.
|
|
It resets the callback list for the specified event to an empty list, effectively removing all
|
|
registered callbacks for that event.
|
|
|
|
Args:
|
|
event (str): The name of the event for which to clear the callbacks. This should be a valid event name
|
|
recognized by the Ultralytics callback system.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> model.add_callback('on_train_start', lambda: print('Training started'))
|
|
>>> model.clear_callback('on_train_start')
|
|
>>> # All callbacks for 'on_train_start' are now removed
|
|
|
|
Notes:
|
|
- This method affects both custom callbacks added by the user and default callbacks
|
|
provided by the Ultralytics framework.
|
|
- After calling this method, no callbacks will be executed for the specified event
|
|
until new ones are added.
|
|
- Use with caution as it removes all callbacks, including essential ones that might
|
|
be required for proper functioning of certain operations.
|
|
"""
|
|
self.callbacks[event] = []
|
|
|
|
def reset_callbacks(self) -> None:
|
|
"""
|
|
Resets all callbacks to their default functions.
|
|
|
|
This method reinstates the default callback functions for all events, removing any custom callbacks that were
|
|
previously added. It iterates through all default callback events and replaces the current callbacks with the
|
|
default ones.
|
|
|
|
The default callbacks are defined in the 'callbacks.default_callbacks' dictionary, which contains predefined
|
|
functions for various events in the model's lifecycle, such as on_train_start, on_epoch_end, etc.
|
|
|
|
This method is useful when you want to revert to the original set of callbacks after making custom
|
|
modifications, ensuring consistent behavior across different runs or experiments.
|
|
|
|
Examples:
|
|
>>> model = YOLO('yolov8n.pt')
|
|
>>> model.add_callback('on_train_start', custom_function)
|
|
>>> model.reset_callbacks()
|
|
# All callbacks are now reset to their default functions
|
|
"""
|
|
for event in callbacks.default_callbacks.keys():
|
|
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
|
|
|
@staticmethod
|
|
def _reset_ckpt_args(args: dict) -> dict:
|
|
"""
|
|
Resets specific arguments when loading a PyTorch model checkpoint.
|
|
|
|
This static method filters the input arguments dictionary to retain only a specific set of keys that are
|
|
considered important for model loading. It's used to ensure that only relevant arguments are preserved
|
|
when loading a model from a checkpoint, discarding any unnecessary or potentially conflicting settings.
|
|
|
|
Args:
|
|
args (dict): A dictionary containing various model arguments and settings.
|
|
|
|
Returns:
|
|
(dict): A new dictionary containing only the specified include keys from the input arguments.
|
|
|
|
Examples:
|
|
>>> original_args = {'imgsz': 640, 'data': 'coco.yaml', 'task': 'detect', 'batch': 16, 'epochs': 100}
|
|
>>> reset_args = Model._reset_ckpt_args(original_args)
|
|
>>> print(reset_args)
|
|
{'imgsz': 640, 'data': 'coco.yaml', 'task': 'detect'}
|
|
"""
|
|
include = {"imgsz", "data", "task", "single_cls"} # only remember these arguments when loading a PyTorch model
|
|
return {k: v for k, v in args.items() if k in include}
|
|
|
|
# def __getattr__(self, attr):
|
|
# """Raises error if object has no requested attribute."""
|
|
# name = self.__class__.__name__
|
|
# raise AttributeError(f"'{name}' object has no attribute '{attr}'. See valid attributes below.\n{self.__doc__}")
|
|
|
|
def _smart_load(self, key: str):
|
|
"""
|
|
Loads the appropriate module based on the model task.
|
|
|
|
This method dynamically selects and returns the correct module (model, trainer, validator, or predictor)
|
|
based on the current task of the model and the provided key. It uses the task_map attribute to determine
|
|
the correct module to load.
|
|
|
|
Args:
|
|
key (str): The type of module to load. Must be one of 'model', 'trainer', 'validator', or 'predictor'.
|
|
|
|
Returns:
|
|
(object): The loaded module corresponding to the specified key and current task.
|
|
|
|
Raises:
|
|
NotImplementedError: If the specified key is not supported for the current task.
|
|
|
|
Examples:
|
|
>>> model = Model(task='detect')
|
|
>>> predictor = model._smart_load('predictor')
|
|
>>> trainer = model._smart_load('trainer')
|
|
|
|
Notes:
|
|
- This method is typically used internally by other methods of the Model class.
|
|
- The task_map attribute should be properly initialized with the correct mappings for each task.
|
|
"""
|
|
try:
|
|
return self.task_map[self.task][key]
|
|
except Exception as e:
|
|
name = self.__class__.__name__
|
|
mode = inspect.stack()[1][3] # get the function name.
|
|
raise NotImplementedError(
|
|
emojis(f"WARNING ⚠️ '{name}' model does not support '{mode}' mode for '{self.task}' task yet.")
|
|
) from e
|
|
|
|
@property
|
|
def task_map(self) -> dict:
|
|
"""
|
|
Provides a mapping from model tasks to corresponding classes for different modes.
|
|
|
|
This property method returns a dictionary that maps each supported task (e.g., detect, segment, classify)
|
|
to a nested dictionary. The nested dictionary contains mappings for different operational modes
|
|
(model, trainer, validator, predictor) to their respective class implementations.
|
|
|
|
The mapping allows for dynamic loading of appropriate classes based on the model's task and the
|
|
desired operational mode. This facilitates a flexible and extensible architecture for handling
|
|
various tasks and modes within the Ultralytics framework.
|
|
|
|
Returns:
|
|
(Dict[str, Dict[str, Any]]): A dictionary where keys are task names (str) and values are
|
|
nested dictionaries. Each nested dictionary has keys 'model', 'trainer', 'validator', and
|
|
'predictor', mapping to their respective class implementations.
|
|
|
|
Examples:
|
|
>>> model = Model()
|
|
>>> task_map = model.task_map
|
|
>>> detect_class_map = task_map['detect']
|
|
>>> segment_class_map = task_map['segment']
|
|
|
|
Note:
|
|
The actual implementation of this method may vary depending on the specific tasks and
|
|
classes supported by the Ultralytics framework. The docstring provides a general
|
|
description of the expected behavior and structure.
|
|
"""
|
|
raise NotImplementedError("Please provide task map for your model!")
|