fujie_code/utils/utils_fit.py

152 lines
5.5 KiB
Python
Raw Normal View History

2024-07-04 17:03:29 +08:00
import os
import torch
from tqdm import tqdm
from utils.utils import get_lr
def fit_one_epoch(model_train, model, yolo_loss, loss_history, eval_callback, optimizer, epoch, epoch_step,
epoch_step_val, gen, gen_val, Epoch, cuda, fp16, scaler, save_period, save_dir, local_rank=0):
loss = 0
val_loss = 0
if local_rank == 0:
print('Start Train')
pbar = tqdm(total=epoch_step, desc=f'Epoch {epoch + 1}/{Epoch}', postfix=dict, mininterval=0.3)
model_train.train() # 调整所有的模块为train模式
for iteration, batch in enumerate(gen):
if iteration >= epoch_step: # 有什么意义?
break
images, targets = batch[0], batch[1] # targets也是归一化了的
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = [ann.cuda(local_rank) for ann in
targets] # targets是一个python的list里面是tensor把tensor逐个转到cuda上然后targets还是python的列表
# ----------------------#
# 清零梯度
# ----------------------#
optimizer.zero_grad()
if not fp16:
# ----------------------#
# 前向传播
# ----------------------#
outputs = model_train(images)
loss_value_all = 0
# ----------------------#
# 计算损失
# ----------------------#
for l in range(len(outputs)): # 三组不同分辨率大小的输出特征分别计算
loss_item = yolo_loss(l, outputs[l], targets)
loss_value_all += loss_item
loss_value = loss_value_all
# ----------------------#
# 反向传播
# ----------------------#
loss_value.backward()
optimizer.step()
else: # 不进入这条分支
from torch.cuda.amp import autocast
with autocast():
# ----------------------#
# 前向传播
# ----------------------#
outputs = model_train(images)
loss_value_all = 0
# ----------------------#
# 计算损失
# ----------------------#
for l in range(len(outputs)):
loss_item = yolo_loss(l, outputs[l], targets)
loss_value_all += loss_item
loss_value = loss_value_all
# ----------------------#
# 反向传播
# ----------------------#
scaler.scale(loss_value).backward()
scaler.step(optimizer)
scaler.update()
loss += loss_value.item()
# # 调试用 begin
# if iteration > 2:
# break
# # 调试用 end
if local_rank == 0:
pbar.set_postfix(**{'loss': loss / (iteration + 1),
'lr': get_lr(optimizer)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Train')
print('Start Validation')
pbar = tqdm(total=epoch_step_val, desc=f'Epoch {epoch + 1}/{Epoch}', postfix=dict, mininterval=0.3)
model_train.eval()
for iteration, batch in enumerate(gen_val):
if iteration >= epoch_step_val:
break
images, targets = batch[0], batch[1]
with torch.no_grad():
if cuda:
images = images.cuda(local_rank)
targets = [ann.cuda(local_rank) for ann in targets]
# ----------------------#
# 清零梯度
# ----------------------#
optimizer.zero_grad()
# ----------------------#
# 前向传播
# ----------------------#
outputs = model_train(images)
loss_value_all = 0
# ----------------------#
# 计算损失
# ----------------------#
for l in range(len(outputs)):
loss_item = yolo_loss(l, outputs[l], targets)
loss_value_all += loss_item
loss_value = loss_value_all
val_loss += loss_value.item()
# # 调试用 begin
# if iteration > 2:
# break
# # 调试用 end
if local_rank == 0:
pbar.set_postfix(**{'val_loss': val_loss / (iteration + 1)})
pbar.update(1)
if local_rank == 0:
pbar.close()
print('Finish Validation')
loss_history.append_loss(epoch + 1, loss / epoch_step, val_loss / epoch_step_val)
eval_callback.on_epoch_end(epoch + 1, model_train)
print('Epoch:' + str(epoch + 1) + '/' + str(Epoch))
print('Total Loss: %.3f || Val Loss: %.3f ' % (loss / epoch_step, val_loss / epoch_step_val))
# -----------------------------------------------#
# 保存权值
# -----------------------------------------------#
if (epoch + 1) % save_period == 0 or epoch + 1 == Epoch:
torch.save(model.state_dict(), os.path.join(save_dir, "ep%03d-loss%.3f-val_loss%.3f.pth" % (
epoch + 1, loss / epoch_step, val_loss / epoch_step_val)))
if len(loss_history.val_loss) <= 1 or (val_loss / epoch_step_val) <= min(loss_history.val_loss):
print('Save best model to best_epoch_weights.pth')
torch.save(model.state_dict(), os.path.join(save_dir, "best_epoch_weights.pth"))
torch.save(model.state_dict(), os.path.join(save_dir, "last_epoch_weights.pth"))