import math from collections import OrderedDict import torch.nn as nn # ---------------------------------------------------------------------# # 残差结构 # 利用一个1x1卷积下降通道数,然后利用一个3x3卷积提取特征并且上升通道数 # 最后接上一个残差边 # ---------------------------------------------------------------------# class BasicBlock(nn.Module): def __init__(self, inplanes, planes): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes[0], kernel_size=1, stride=1, padding=0, bias=False) # 从大通道转化小通道。又从小通道转为大通道。 self.bn1 = nn.BatchNorm2d(planes[0]) self.relu1 = nn.LeakyReLU(0.1) self.conv2 = nn.Conv2d(planes[0], planes[1], kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes[1]) self.relu2 = nn.LeakyReLU(0.1) def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out += residual return out class DarkNet(nn.Module): def __init__(self, layers): super(DarkNet, self).__init__() self.inplanes = 32 # 第一次卷积,输出通道为32 # 416,416,3 -> 416,416,32 self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(self.inplanes) self.relu1 = nn.LeakyReLU(0.1) # 416,416,32 -> 208,208,64 self.layer1 = self._make_layer([32, 64], layers[0]) # layers 中保存的是程序块重复的次数 # 208,208,64 -> 104,104,128 self.layer2 = self._make_layer([64, 128], layers[1]) # 104,104,128 -> 52,52,256 self.layer3 = self._make_layer([128, 256], layers[2]) # 52,52,256 -> 26,26,512 self.layer4 = self._make_layer([256, 512], layers[3]) # 26,26,512 -> 13,13,1024 self.layer5 = self._make_layer([512, 1024], layers[4]) self.layers_out_filters = [64, 128, 256, 512, 1024] # 进行权值初始化 for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() # ---------------------------------------------------------------------# # 在每一个layer里面,首先利用一个步长为2的3x3卷积进行下采样 # 然后进行残差结构的堆叠 # ---------------------------------------------------------------------# def _make_layer(self, planes, blocks): layers = [] # 下采样,步长为2,卷积核大小为3 # 进入_make_layer先创建一层网络,用于降采样,然后再是多个重复的block layers.append(("ds_conv", nn.Conv2d(self.inplanes, planes[1], kernel_size=3, stride=2, padding=1, bias=False))) layers.append(("ds_bn", nn.BatchNorm2d(planes[1]))) layers.append(("ds_relu", nn.LeakyReLU(0.1))) # 加入残差结构 self.inplanes = planes[1] # 保存这一层的输出通道,也是下一层的输入通道 for i in range(0, blocks): layers.append(("residual_{}".format(i), BasicBlock(self.inplanes, planes))) return nn.Sequential(OrderedDict(layers)) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.layer1(x) x = self.layer2(x) out3 = self.layer3(x) out4 = self.layer4(out3) out5 = self.layer5(out4) return out3, out4, out5 def darknet53(): model = DarkNet([1, 2, 8, 8, 4]) return model