35 lines
1.3 KiB
Python
35 lines
1.3 KiB
Python
# --------------------------------------------#
|
||
# 该部分代码用于看网络结构
|
||
# --------------------------------------------#
|
||
import torch
|
||
# from thop import clever_format, profile
|
||
from torchsummary import summary
|
||
|
||
from nets.yolo import YoloBody
|
||
|
||
if __name__ == "__main__":
|
||
input_shape = [416, 416]
|
||
anchors_mask = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
|
||
num_classes = 80
|
||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||
m = YoloBody(anchors_mask, num_classes)
|
||
print(m)
|
||
print('-' * 80)
|
||
|
||
m = m.to(device)
|
||
summary(m, (3, input_shape[0], input_shape[1]))
|
||
|
||
# dummy_input = torch.randn(1, 3, input_shape[0], input_shape[1]).to(device)
|
||
# flops, params = profile(m.to(device), (dummy_input,), verbose=False)
|
||
# --------------------------------------------------------#
|
||
# flops * 2是因为profile没有将卷积作为两个operations
|
||
# 有些论文将卷积算乘法、加法两个operations。此时乘2
|
||
# 有些论文只考虑乘法的运算次数,忽略加法。此时不乘2
|
||
# 本代码选择乘2,参考YOLOX。
|
||
# --------------------------------------------------------#
|
||
# flops = flops * 2
|
||
# flops, params = clever_format([flops, params], "%.3f")
|
||
# print('Total GFLOPS: %s' % (flops))
|
||
# print('Total params: %s' % (params))
|