keyan/te_u/paper_down_load/pdf_show2.py

65 lines
2.5 KiB
Python
Raw Permalink Normal View History

2024-06-17 14:04:28 +08:00
import os
import gradio as gr
from gradio_pdf import PDF
current_pdf_file = None
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
with gr.Row():
# gr.Label("会议名称")
conf_name = gr.Dropdown(choices=["ECCV2022", "ECCV2020", "CVPR2024"], value="ECCV2022", label="会议名称", show_label=True)
conf_button = gr.Button("查看会议论文", variant='primary')
dataframe = gr.Dataframe(headers=["论文名称"], col_count=(1, "fixed"), type='array', height=800)
with gr.Row():
look_input = gr.Textbox(placeholder="关键词检索", label="关键词过滤")
filter_button = gr.Button("过滤")
# up_button = gr.Button("加载")
with gr.Column(scale=2):
pdf = PDF(label="Upload a PDF", interactive=True, height=1000)
# name = gr.Textbox(show_label=False)
# pdf.upload(lambda f: f, pdf, name)
def up_load():
global current_pdf_file
n = r"D:\py\keyan_qingbao\te_u\paper_down_load\ECCV_2022\main_paper\3d-siamese-transformer-network-for-single-object-tracking-on-point-clouds_ECCV_2022.pdf"
current_pdf_file = n
return n
def load_conf_list(conf_name):
if conf_name == "ECCV2022":
root_dir = r"D:\py\keyan_qingbao\te_u\paper_down_load\ECCV_2022\main_paper"
return [[i] for i in os.listdir(root_dir)]
def look_dataframe(evt: gr.SelectData):
global current_pdf_file
if evt.value:
root_dir = r"D:\py\keyan_qingbao\te_u\paper_down_load\ECCV_2022\main_paper"
n = os.path.join(root_dir, evt.value)
if os.path.exists(n):
current_pdf_file = n
return PDF(value=current_pdf_file, label="Upload a PDF", interactive=True, height=1000)
def filter_by_word(words, paper_list):
word_list = words.strip().split()
paper_list_filter = [p[0] for p in paper_list]
for word in word_list:
paper_list_filter = [p for p in paper_list_filter if word in p]
return [[p] for p in paper_list_filter]
filter_button.click(filter_by_word, inputs=[look_input, dataframe], outputs=[dataframe])
dataframe.select(look_dataframe, inputs=None, outputs=[pdf])
conf_button.click(load_conf_list, inputs=[conf_name], outputs=[dataframe])
# up_button.click(up_load, inputs=None, outputs=[pdf])
demo.launch()