Go to file
朱瑞 c8504c8e34 first commit 2024-07-04 17:00:21 +08:00
configs first commit 2024-07-04 17:00:21 +08:00
datasets first commit 2024-07-04 17:00:21 +08:00
models first commit 2024-07-04 17:00:21 +08:00
runner first commit 2024-07-04 17:00:21 +08:00
tools first commit 2024-07-04 17:00:21 +08:00
utils first commit 2024-07-04 17:00:21 +08:00
.gitignore first commit 2024-07-04 17:00:21 +08:00
INSTALL.md first commit 2024-07-04 17:00:21 +08:00
LICENSE first commit 2024-07-04 17:00:21 +08:00
README.md first commit 2024-07-04 17:00:21 +08:00
intro.png first commit 2024-07-04 17:00:21 +08:00
main.py first commit 2024-07-04 17:00:21 +08:00
requirement.txt first commit 2024-07-04 17:00:21 +08:00

README.md

RESA

PyTorch implementation of the paper "RESA: Recurrent Feature-Shift Aggregator for Lane Detection".

Our paper has been accepted by AAAI2021.

News: We also release RESA on LaneDet. It's also recommended for you to try LaneDet.

Introduction

intro

  • RESA shifts sliced feature map recurrently in vertical and horizontal directions and enables each pixel to gather global information.
  • RESA achieves SOTA results on CULane and Tusimple Dataset.

Get started

  1. Clone the RESA repository

    git clone https://github.com/zjulearning/resa.git
    

    We call this directory as $RESA_ROOT

  2. Create a conda virtual environment and activate it (conda is optional)

    conda create -n resa python=3.8 -y
    conda activate resa
    
  3. Install dependencies

    # Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
    conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
    
    # Or you can install via pip
    pip install torch torchvision
    
    # Install python packages
    pip install -r requirements.txt
    
  4. Data preparation

    Download CULane and Tusimple. Then extract them to $CULANEROOT and $TUSIMPLEROOT. Create link to data directory.

    cd $RESA_ROOT
    mkdir -p data
    ln -s $CULANEROOT data/CULane
    ln -s $TUSIMPLEROOT data/tusimple
    

    For CULane, you should have structure like this:

    $CULANEROOT/driver_xx_xxframe    # data folders x6
    $CULANEROOT/laneseg_label_w16    # lane segmentation labels
    $CULANEROOT/list                 # data lists
    

    For Tusimple, you should have structure like this:

    $TUSIMPLEROOT/clips # data folders
    $TUSIMPLEROOT/lable_data_xxxx.json # label json file x4
    $TUSIMPLEROOT/test_tasks_0627.json # test tasks json file
    $TUSIMPLEROOT/test_label.json # test label json file
    
    

    For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.

    python tools/generate_seg_tusimple.py --root $TUSIMPLEROOT
    # this will generate seg_label directory
    
  5. Install CULane evaluation tools.

    This tools requires OpenCV C++. Please follow here to install OpenCV C++. Or just install opencv with command sudo apt-get install libopencv-dev

    Then compile the evaluation tool of CULane.

    cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
    make
    cd -
    

    Note that, the default opencv version is 3. If you use opencv2, please modify the OPENCV_VERSION := 3 to OPENCV_VERSION := 2 in the Makefile.

Training

For training, run

python main.py [configs/path_to_your_config] --gpus [gpu_ids]

For example, run

python main.py configs/culane.py --gpus 0 1 2 3

Testing

For testing, run

python main.py c[configs/path_to_your_config] --validate --load_from [path_to_your_model] [gpu_num]

For example, run

python main.py configs/culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3

python main.py configs/tusimple.py --validate --load_from tusimple_resnet34.pth --gpus 0 1 2 3

We provide two trained ResNet models on CULane and Tusimple, downloading our best performed model (Tusimple: GoogleDrive/BaiduDrive(code:s5ii), CULane: GoogleDrive/BaiduDrive(code:rlwj) )

Visualization

Just add --view.

For example:

python main.py configs/culane.py --validate --load_from culane_resnet50.pth --gpus 0 1 2 3 --view

You will get the result in the directory: work_dirs/[DATASET]/xxx/vis.

Citation

If you use our method, please consider citing:

@inproceedings{zheng2021resa,
  title={RESA: Recurrent Feature-Shift Aggregator for Lane Detection},
  author={Zheng, Tu and Fang, Hao and Zhang, Yi and Tang, Wenjian and Yang, Zheng and Liu, Haifeng and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  volume={35},
  number={4},
  pages={3547--3554},
  year={2021}
}