94 lines
1.4 KiB
Python
94 lines
1.4 KiB
Python
|
net = dict(
|
||
|
type='RESANet',
|
||
|
)
|
||
|
|
||
|
backbone = dict(
|
||
|
type='ResNetWrapper',
|
||
|
resnet='resnet34',
|
||
|
pretrained=True,
|
||
|
replace_stride_with_dilation=[False, True, True],
|
||
|
out_conv=True,
|
||
|
fea_stride=8,
|
||
|
)
|
||
|
|
||
|
resa = dict(
|
||
|
type='RESA',
|
||
|
alpha=2.0,
|
||
|
iter=5,
|
||
|
input_channel=128,
|
||
|
conv_stride=9,
|
||
|
)
|
||
|
|
||
|
decoder = 'BUSD'
|
||
|
|
||
|
trainer = dict(
|
||
|
type='RESA'
|
||
|
)
|
||
|
|
||
|
evaluator = dict(
|
||
|
type='Tusimple',
|
||
|
thresh = 0.60
|
||
|
)
|
||
|
|
||
|
optimizer = dict(
|
||
|
type='sgd',
|
||
|
lr=0.020,
|
||
|
weight_decay=1e-4,
|
||
|
momentum=0.9
|
||
|
)
|
||
|
|
||
|
total_iter = 181400
|
||
|
import math
|
||
|
scheduler = dict(
|
||
|
type = 'LambdaLR',
|
||
|
lr_lambda = lambda _iter : math.pow(1 - _iter/total_iter, 0.9)
|
||
|
)
|
||
|
|
||
|
bg_weight = 0.4
|
||
|
|
||
|
img_norm = dict(
|
||
|
mean=[103.939, 116.779, 123.68],
|
||
|
std=[1., 1., 1.]
|
||
|
)
|
||
|
|
||
|
img_height = 368
|
||
|
img_width = 640
|
||
|
cut_height = 160
|
||
|
seg_label = "seg_label"
|
||
|
|
||
|
dataset_path = './data/tusimple'
|
||
|
test_json_file = './data/tusimple/test_label.json'
|
||
|
|
||
|
dataset = dict(
|
||
|
train=dict(
|
||
|
type='TuSimple',
|
||
|
img_path=dataset_path,
|
||
|
data_list='train_val_gt.txt',
|
||
|
),
|
||
|
val=dict(
|
||
|
type='TuSimple',
|
||
|
img_path=dataset_path,
|
||
|
data_list='test_gt.txt'
|
||
|
),
|
||
|
test=dict(
|
||
|
type='TuSimple',
|
||
|
img_path=dataset_path,
|
||
|
data_list='test_gt.txt'
|
||
|
)
|
||
|
)
|
||
|
|
||
|
|
||
|
loss_type = 'cross_entropy'
|
||
|
seg_loss_weight = 1.0
|
||
|
|
||
|
|
||
|
batch_size = 4
|
||
|
workers = 12
|
||
|
num_classes = 6 + 1
|
||
|
ignore_label = 255
|
||
|
epochs = 300
|
||
|
log_interval = 100
|
||
|
eval_ep = 1
|
||
|
save_ep = epochs
|
||
|
log_note = ''
|