lili_code/INSTALL.md

74 lines
2.5 KiB
Markdown
Raw Normal View History

2024-07-04 17:00:21 +08:00
# Install
1. Clone the RESA repository
```
git clone https://github.com/zjulearning/resa.git
```
We call this directory as `$RESA_ROOT`
2. Create a conda virtual environment and activate it (conda is optional)
```Shell
conda create -n resa python=3.8 -y
conda activate resa
```
3. Install dependencies
```Shell
# Install pytorch firstly, the cudatoolkit version should be same in your system. (you can also use pip to install pytorch and torchvision)
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
# Or you can install via pip
pip install torch torchvision
# Install python packages
pip install -r requirements.txt
```
4. Data preparation
Download [CULane](https://xingangpan.github.io/projects/CULane.html) and [Tusimple](https://github.com/TuSimple/tusimple-benchmark/issues/3). Then extract them to `$CULANEROOT` and `$TUSIMPLEROOT`. Create link to `data` directory.
```Shell
cd $RESA_ROOT
ln -s $CULANEROOT data/CULane
ln -s $TUSIMPLEROOT data/tusimple
```
For Tusimple, the segmentation annotation is not provided, hence we need to generate segmentation from the json annotation.
```Shell
python scripts/convert_tusimple.py --root $TUSIMPLEROOT
# this will generate segmentations and two list files: train_gt.txt and test.txt
```
For CULane, you should have structure like this:
```
$RESA_ROOT/data/CULane/driver_xx_xxframe # data folders x6
$RESA_ROOT/data/CULane/laneseg_label_w16 # lane segmentation labels
$RESA_ROOT/data/CULane/list # data lists
```
For Tusimple, you should have structure like this:
```
$RESA_ROOT/data/tusimple/clips # data folders
$RESA_ROOT/data/tusimple/lable_data_xxxx.json # label json file x4
$RESA_ROOT/data/tusimple/test_tasks_0627.json # test tasks json file
$RESA_ROOT/data/tusimple/test_label.json # test label json file
```
5. Install CULane evaluation tools.
This tools requires OpenCV C++. Please follow [here](https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html) to install OpenCV C++. Or just install opencv with command `sudo apt-get install libopencv-dev`
Then compile the evaluation tool of CULane.
```Shell
cd $RESA_ROOT/runner/evaluator/culane/lane_evaluation
make
cd -
```
Note that, the default `opencv` version is 3. If you use opencv2, please modify the `OPENCV_VERSION := 3` to `OPENCV_VERSION := 2` in the `Makefile`.