lili_code/models/decoder_copy.py

136 lines
4.4 KiB
Python
Raw Normal View History

2024-07-04 17:00:21 +08:00
from torch import nn
import torch.nn.functional as F
import torch
class PlainDecoder(nn.Module):
def __init__(self, cfg):
super(PlainDecoder, self).__init__()
self.cfg = cfg
self.dropout = nn.Dropout2d(0.1)
self.conv8 = nn.Conv2d(128, cfg.num_classes, 1)
def forward(self, x):
x = self.dropout(x)
x = self.conv8(x)
x = F.interpolate(x, size=[self.cfg.img_height, self.cfg.img_width],
mode='bilinear', align_corners=False)
return x
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class non_bottleneck_1d(nn.Module):
def __init__(self, chann, dropprob, dilated):
super().__init__()
self.conv3x1_1 = nn.Conv2d(
chann, chann, (3, 1), stride=1, padding=(1, 0), bias=True)
self.conv1x3_1 = nn.Conv2d(
chann, chann, (1, 3), stride=1, padding=(0, 1), bias=True)
self.bn1 = nn.BatchNorm2d(chann, eps=1e-03)
self.conv3x1_2 = nn.Conv2d(chann, chann, (3, 1), stride=1, padding=(1 * dilated, 0), bias=True,
dilation=(dilated, 1))
self.conv1x3_2 = nn.Conv2d(chann, chann, (1, 3), stride=1, padding=(0, 1 * dilated), bias=True,
dilation=(1, dilated))
self.bn2 = nn.BatchNorm2d(chann, eps=1e-03)
self.dropout = nn.Dropout2d(dropprob)
def forward(self, input):
output = self.conv3x1_1(input)
output = F.relu(output)
output = self.conv1x3_1(output)
output = self.bn1(output)
output = F.relu(output)
output = self.conv3x1_2(output)
output = F.relu(output)
output = self.conv1x3_2(output)
output = self.bn2(output)
if (self.dropout.p != 0):
output = self.dropout(output)
# +input = identity (residual connection)
return F.relu(output + input)
class UpsamplerBlock(nn.Module):
def __init__(self, ninput, noutput, up_width, up_height):
super().__init__()
self.conv = nn.ConvTranspose2d(
ninput, noutput, 3, stride=2, padding=1, output_padding=1, bias=True)
self.bn = nn.BatchNorm2d(noutput, eps=1e-3, track_running_stats=True)
self.follows = nn.ModuleList()
self.follows.append(non_bottleneck_1d(noutput, 0, 1))
self.follows.append(non_bottleneck_1d(noutput, 0, 1))
# interpolate
self.up_width = up_width
self.up_height = up_height
self.interpolate_conv = conv1x1(ninput, noutput)
self.interpolate_bn = nn.BatchNorm2d(
noutput, eps=1e-3, track_running_stats=True)
def forward(self, input):
output = self.conv(input)
output = self.bn(output)
out = F.relu(output)
for follow in self.follows:
out = follow(out)
interpolate_output = self.interpolate_conv(input)
interpolate_output = self.interpolate_bn(interpolate_output)
interpolate_output = F.relu(interpolate_output)
interpolate = F.interpolate(interpolate_output, size=[self.up_height, self.up_width],
mode='bilinear', align_corners=False)
return out + interpolate
class BUSD(nn.Module):
def __init__(self, cfg):
super().__init__()
img_height = cfg.img_height
img_width = cfg.img_width
num_classes = cfg.num_classes
self.layers = nn.ModuleList()
self.layers.append(UpsamplerBlock(ninput=128, noutput=64,
up_height=int(img_height)//4, up_width=int(img_width)//4))
self.layers.append(UpsamplerBlock(ninput=128, noutput=64,
up_height=int(img_height)//2, up_width=int(img_width)//2))
self.layers.append(UpsamplerBlock(ninput=64, noutput=32,
up_height=int(img_height)//1, up_width=int(img_width)//1))
self.output_conv = conv1x1(32, num_classes)
def forward(self, input):
x = input[0]
output = input[1]
for i,layer in enumerate(self.layers):
output = layer(output)
if i == 0:
output = torch.cat((x, output), dim=1)
output = self.output_conv(output)
return output