lili_code/models/mobilenetv2_copy2.py

437 lines
16 KiB
Python
Raw Normal View History

2024-07-04 17:00:21 +08:00
from functools import partial
from typing import Any, Callable, List, Optional
import torch
from torch import nn, Tensor
from torchvision.transforms._presets import ImageClassification
from torchvision.utils import _log_api_usage_once
from torchvision.models._api import Weights, WeightsEnum
from torchvision.models._meta import _IMAGENET_CATEGORIES
from torchvision.models._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
import warnings
from typing import Callable, List, Optional, Sequence, Tuple, Union, TypeVar
import collections
from itertools import repeat
M = TypeVar("M", bound=nn.Module)
BUILTIN_MODELS = {}
def register_model(name: Optional[str] = None) -> Callable[[Callable[..., M]], Callable[..., M]]:
def wrapper(fn: Callable[..., M]) -> Callable[..., M]:
key = name if name is not None else fn.__name__
if key in BUILTIN_MODELS:
raise ValueError(f"An entry is already registered under the name '{key}'.")
BUILTIN_MODELS[key] = fn
return fn
return wrapper
def _make_ntuple(x: Any, n: int) -> Tuple[Any, ...]:
"""
Make n-tuple from input x. If x is an iterable, then we just convert it to tuple.
Otherwise, we will make a tuple of length n, all with value of x.
reference: https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/utils.py#L8
Args:
x (Any): input value
n (int): length of the resulting tuple
"""
if isinstance(x, collections.abc.Iterable):
return tuple(x)
return tuple(repeat(x, n))
class ConvNormActivation(torch.nn.Sequential):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, ...]] = 3,
stride: Union[int, Tuple[int, ...]] = 1,
padding: Optional[Union[int, Tuple[int, ...], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, ...]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
conv_layer: Callable[..., torch.nn.Module] = torch.nn.Conv2d,
) -> None:
if padding is None:
if isinstance(kernel_size, int) and isinstance(dilation, int):
padding = (kernel_size - 1) // 2 * dilation
else:
_conv_dim = len(kernel_size) if isinstance(kernel_size, Sequence) else len(dilation)
kernel_size = _make_ntuple(kernel_size, _conv_dim)
dilation = _make_ntuple(dilation, _conv_dim)
padding = tuple((kernel_size[i] - 1) // 2 * dilation[i] for i in range(_conv_dim))
if bias is None:
bias = norm_layer is None
layers = [
conv_layer(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation=dilation,
groups=groups,
bias=bias,
)
]
if norm_layer is not None:
layers.append(norm_layer(out_channels))
if activation_layer is not None:
params = {} if inplace is None else {"inplace": inplace}
layers.append(activation_layer(**params))
super().__init__(*layers)
_log_api_usage_once(self)
self.out_channels = out_channels
if self.__class__ == ConvNormActivation:
warnings.warn(
"Don't use ConvNormActivation directly, please use Conv2dNormActivation and Conv3dNormActivation instead."
)
class Conv2dNormActivation(ConvNormActivation):
"""
Configurable block used for Convolution2d-Normalization-Activation blocks.
Args:
in_channels (int): Number of channels in the input image
out_channels (int): Number of channels produced by the Convolution-Normalization-Activation block
kernel_size: (int, optional): Size of the convolving kernel. Default: 3
stride (int, optional): Stride of the convolution. Default: 1
padding (int, tuple or str, optional): Padding added to all four sides of the input. Default: None, in which case it will be calculated as ``padding = (kernel_size - 1) // 2 * dilation``
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
norm_layer (Callable[..., torch.nn.Module], optional): Norm layer that will be stacked on top of the convolution layer. If ``None`` this layer won't be used. Default: ``torch.nn.BatchNorm2d``
activation_layer (Callable[..., torch.nn.Module], optional): Activation function which will be stacked on top of the normalization layer (if not None), otherwise on top of the conv layer. If ``None`` this layer won't be used. Default: ``torch.nn.ReLU``
dilation (int): Spacing between kernel elements. Default: 1
inplace (bool): Parameter for the activation layer, which can optionally do the operation in-place. Default ``True``
bias (bool, optional): Whether to use bias in the convolution layer. By default, biases are included if ``norm_layer is None``.
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]] = 3,
stride: Union[int, Tuple[int, int]] = 1,
padding: Optional[Union[int, Tuple[int, int], str]] = None,
groups: int = 1,
norm_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.BatchNorm2d,
activation_layer: Optional[Callable[..., torch.nn.Module]] = torch.nn.ReLU,
dilation: Union[int, Tuple[int, int]] = 1,
inplace: Optional[bool] = True,
bias: Optional[bool] = None,
) -> None:
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
groups,
norm_layer,
activation_layer,
dilation,
inplace,
bias,
torch.nn.Conv2d,
)
__all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]
# necessary for backwards compatibility
class InvertedResidual(nn.Module):
def __init__(
self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
) -> None:
super().__init__()
self.stride = stride
if stride not in [1, 2]:
raise ValueError(f"stride should be 1 or 2 instead of {stride}")
if norm_layer is None:
norm_layer = nn.BatchNorm2d
hidden_dim = int(round(inp * expand_ratio))
self.use_res_connect = self.stride == 1 and inp == oup
layers: List[nn.Module] = []
if expand_ratio != 1:
# pw
layers.append(
Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
)
layers.extend(
[
# dw
Conv2dNormActivation(
hidden_dim,
hidden_dim,
stride=stride,
groups=hidden_dim,
norm_layer=norm_layer,
activation_layer=nn.ReLU6,
),
# pw-linear
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
norm_layer(oup),
]
)
self.conv = nn.Sequential(*layers)
self.out_channels = oup
self._is_cn = stride > 1
def forward(self, x: Tensor) -> Tensor:
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV2(nn.Module):
def __init__(
self,
num_classes: int = 1000,
width_mult: float = 1.0,
inverted_residual_setting: Optional[List[List[int]]] = None,
round_nearest: int = 8,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None,
dropout: float = 0.2,
) -> None:
"""
MobileNet V2 main class
Args:
num_classes (int): Number of classes
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
inverted_residual_setting: Network structure
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
Set to 1 to turn off rounding
block: Module specifying inverted residual building block for mobilenet
norm_layer: Module specifying the normalization layer to use
dropout (float): The droupout probability
"""
super().__init__()
_log_api_usage_once(self)
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = nn.BatchNorm2d
input_channel = 32
last_channel = 1280
if inverted_residual_setting is None:
inverted_residual_setting = [
# t, c, n, s
[1, 16, 1, 1],
[6, 24, 2, 1],
[6, 32, 3, 1],
[6, 64, 4, 2],
[6, 96, 3, 1],
[6, 160, 3, 2],
[6, 320, 1, 1],
]
# only check the first element, assuming user knows t,c,n,s are required
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
raise ValueError(
f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
)
# building first layer
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
features: List[nn.Module] = [
Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
]
# building inverted residual blocks
for t, c, n, s in inverted_residual_setting:
output_channel = _make_divisible(c * width_mult, round_nearest)
for i in range(n):
stride = s if i == 0 else 1
features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
input_channel = output_channel
# building last several layers
features.append(
Conv2dNormActivation(
input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
)
)
# make it nn.Sequential
self.features = nn.Sequential(*features)
# self.layer1 = nn.Sequential(*features[:])
# self.layer2 = features[57:120]
# self.layer3 = features[120:]
# building classifier
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(self.last_channel, num_classes),
)
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x: Tensor) -> Tensor:
# This exists since TorchScript doesn't support inheritance, so the superclass method
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
out_layers = []
for layer in self.features.named_modules():
for i, layer1 in enumerate(layer[1]):
# print(layer1)
x = layer1(x)
# print("第{}层,输出大小{}".format(i, x.shape))
if i in [0, 10, 18]:
out_layers.append(x)
break
# x = self.features(x)
# Cannot use "squeeze" as batch-size can be 1
# x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
# x = torch.flatten(x, 1)
# x = self.classifier(x)
return out_layers
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
_COMMON_META = {
"num_params": 3504872,
"min_size": (1, 1),
"categories": _IMAGENET_CATEGORIES,
}
class MobileNet_V2_Weights(WeightsEnum):
IMAGENET1K_V1 = Weights(
url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
transforms=partial(ImageClassification, crop_size=224),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
"_metrics": {
"ImageNet-1K": {
"acc@1": 71.878,
"acc@5": 90.286,
}
},
"_ops": 0.301,
"_file_size": 13.555,
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
},
)
IMAGENET1K_V2 = Weights(
url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
meta={
**_COMMON_META,
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
"_metrics": {
"ImageNet-1K": {
"acc@1": 72.154,
"acc@5": 90.822,
}
},
"_ops": 0.301,
"_file_size": 13.598,
"_docs": """
These weights improve upon the results of the original paper by using a modified version of TorchVision's
`new training recipe
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
""",
},
)
DEFAULT = IMAGENET1K_V2
# @register_model()
# @handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
def mobilenet_v2(
*, weights: Optional[MobileNet_V2_Weights] = MobileNet_V2_Weights.IMAGENET1K_V1, progress: bool = True, **kwargs: Any
) -> MobileNetV2:
"""MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.
Args:
weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
pretrained weights to use. See
:class:`~torchvision.models.MobileNet_V2_Weights` below for
more details, and possible values. By default, no pre-trained
weights are used.
progress (bool, optional): If True, displays a progress bar of the
download to stderr. Default is True.
**kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
base class. Please refer to the `source code
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
for more details about this class.
.. autoclass:: torchvision.models.MobileNet_V2_Weights
:members:
"""
weights = MobileNet_V2_Weights.verify(weights)
if weights is not None:
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
model = MobileNetV2(**kwargs)
if weights is not None:
model.load_state_dict(weights.get_state_dict(progress=progress))
return model
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class MobileNetv2Wrapper(nn.Module):
def __init__(self):
super(MobileNetv2Wrapper, self).__init__()
weights = MobileNet_V2_Weights.verify(MobileNet_V2_Weights.IMAGENET1K_V1)
self.model = MobileNetV2()
if weights is not None:
self.model.load_state_dict(weights.get_state_dict(progress=True))
self.out3 = conv1x1(1280, 128)
def forward(self, x):
# print(x.shape)
out_layers = self.model(x)
# print(x.shape)
# out_layers[0] = self.out1(out_layers[0])
# out_layers[1] = self.out2(out_layers[1])
out_layers[2] = self.out3(out_layers[2])
# print(x.shape)
return out_layers