net = dict( type='RESANet', ) # backbone = dict( # type='ResNetWrapper', # resnet='resnet50', # pretrained=True, # replace_stride_with_dilation=[False, True, True], # out_conv=True, # fea_stride=8, # ) backbone = dict( type='ResNetWrapper', resnet='resnet34', pretrained=True, replace_stride_with_dilation=[False, False, False], out_conv=False, fea_stride=8, ) resa = dict( type='RESA', alpha=2.0, iter=4, input_channel=128, conv_stride=9, ) #decoder = 'PlainDecoder' decoder = 'BUSD' trainer = dict( type='RESA' ) evaluator = dict( type='CULane', ) optimizer = dict( type='sgd', lr=0.025, weight_decay=1e-4, momentum=0.9 ) epochs = 20 batch_size = 8 total_iter = (88880 // batch_size) * epochs import math scheduler = dict( type = 'LambdaLR', lr_lambda = lambda _iter : math.pow(1 - _iter/total_iter, 0.9) ) loss_type = 'dice_loss' seg_loss_weight = 2. eval_ep = 1 save_ep = epochs bg_weight = 0.4 img_norm = dict( mean=[103.939, 116.779, 123.68], std=[1., 1., 1.] ) img_height = 288 img_width = 800 cut_height = 240 dataset_path = './data/CULane' dataset = dict( train=dict( type='CULane', img_path=dataset_path, data_list='train_gt.txt', ), val=dict( type='CULane', img_path=dataset_path, data_list='test.txt', ), test=dict( type='CULane', img_path=dataset_path, data_list='test.txt', ) ) workers = 12 num_classes = 4 + 1 ignore_label = 255 log_interval = 500