import torch.nn as nn import torch import torch.nn.functional as F from models.registry import NET # from .resnet_copy import ResNetWrapper # from .resnet import ResNetWrapper from .decoder_copy2 import BUSD, PlainDecoder # from .decoder import BUSD, PlainDecoder # from .mobilenetv2 import MobileNetv2Wrapper from .mobilenetv2_copy2 import MobileNetv2Wrapper class RESA(nn.Module): def __init__(self, cfg): super(RESA, self).__init__() self.iter = cfg.resa.iter chan = cfg.resa.input_channel fea_stride = cfg.backbone.fea_stride self.height = cfg.img_height // fea_stride self.width = cfg.img_width // fea_stride self.alpha = cfg.resa.alpha conv_stride = cfg.resa.conv_stride for i in range(self.iter): conv_vert1 = nn.Conv2d( chan, chan, (1, conv_stride), padding=(0, conv_stride//2), groups=1, bias=False) conv_vert2 = nn.Conv2d( chan, chan, (1, conv_stride), padding=(0, conv_stride//2), groups=1, bias=False) setattr(self, 'conv_d'+str(i), conv_vert1) setattr(self, 'conv_u'+str(i), conv_vert2) conv_hori1 = nn.Conv2d( chan, chan, (conv_stride, 1), padding=(conv_stride//2, 0), groups=1, bias=False) conv_hori2 = nn.Conv2d( chan, chan, (conv_stride, 1), padding=(conv_stride//2, 0), groups=1, bias=False) setattr(self, 'conv_r'+str(i), conv_hori1) setattr(self, 'conv_l'+str(i), conv_hori2) idx_d = (torch.arange(self.height) + self.height // 2**(self.iter - i)) % self.height setattr(self, 'idx_d'+str(i), idx_d) idx_u = (torch.arange(self.height) - self.height // 2**(self.iter - i)) % self.height setattr(self, 'idx_u'+str(i), idx_u) idx_r = (torch.arange(self.width) + self.width // 2**(self.iter - i)) % self.width setattr(self, 'idx_r'+str(i), idx_r) idx_l = (torch.arange(self.width) - self.width // 2**(self.iter - i)) % self.width setattr(self, 'idx_l'+str(i), idx_l) def forward(self, x): x = x.clone() for direction in ['d', 'u']: for i in range(self.iter): conv = getattr(self, 'conv_' + direction + str(i)) idx = getattr(self, 'idx_' + direction + str(i)) x.add_(self.alpha * F.relu(conv(x[..., idx, :]))) for direction in ['r', 'l']: for i in range(self.iter): conv = getattr(self, 'conv_' + direction + str(i)) idx = getattr(self, 'idx_' + direction + str(i)) x.add_(self.alpha * F.relu(conv(x[..., idx]))) return x class ExistHead(nn.Module): def __init__(self, cfg=None): super(ExistHead, self).__init__() self.cfg = cfg self.dropout = nn.Dropout2d(0.1) # ??? self.conv8 = nn.Conv2d(128, cfg.num_classes, 1) stride = cfg.backbone.fea_stride * 2 self.fc9 = nn.Linear( int(cfg.num_classes * cfg.img_width / stride * cfg.img_height / stride), 128) self.fc10 = nn.Linear(128, cfg.num_classes-1) def forward(self, x): x = self.dropout(x) x = self.conv8(x) x = F.softmax(x, dim=1) x = F.avg_pool2d(x, 2, stride=2, padding=0) x = x.view(-1, x.numel() // x.shape[0]) x = self.fc9(x) x = F.relu(x) x = self.fc10(x) x = torch.sigmoid(x) return x @NET.register_module class RESANet(nn.Module): def __init__(self, cfg): super(RESANet, self).__init__() self.cfg = cfg # self.backbone = ResNetWrapper(resnet='resnet34',pretrained=True, # replace_stride_with_dilation=[False, False, False], # out_conv=False) self.backbone = MobileNetv2Wrapper() self.resa = RESA(cfg) self.decoder = eval(cfg.decoder)(cfg) self.heads = ExistHead(cfg) def forward(self, batch): # x1, fea, _, _ = self.backbone(batch) # fea = self.resa(fea) # # print(fea.shape) # seg = self.decoder([x1,fea]) # # print(seg.shape) # exist = self.heads(fea) fea1,fea2,fea = self.backbone(batch) # print('fea1',fea1.shape) # print('fea2',fea2.shape) # print('fea',fea.shape) fea = self.resa(fea) # print(fea.shape) seg = self.decoder([fea1,fea2,fea]) # print(seg.shape) exist = self.heads(fea) output = {'seg': seg, 'exist': exist} return output