lili_code/configs/culane.py

89 lines
1.4 KiB
Python

net = dict(
type='RESANet',
)
backbone = dict(
type='ResNetWrapper',
resnet='resnet50',
pretrained=True,
replace_stride_with_dilation=[False, True, True],
out_conv=True,
fea_stride=8,
)
resa = dict(
type='RESA',
alpha=2.0,
iter=4,
input_channel=128,
conv_stride=9,
)
#decoder = 'PlainDecoder'
decoder = 'BUSD'
trainer = dict(
type='RESA'
)
evaluator = dict(
type='CULane',
)
optimizer = dict(
type='sgd',
lr=0.025,
weight_decay=1e-4,
momentum=0.9
)
epochs = 12
batch_size = 8
total_iter = (88880 // batch_size) * epochs
import math
scheduler = dict(
type = 'LambdaLR',
lr_lambda = lambda _iter : math.pow(1 - _iter/total_iter, 0.9)
)
loss_type = 'dice_loss'
seg_loss_weight = 2.
eval_ep = 6
save_ep = epochs
bg_weight = 0.4
img_norm = dict(
mean=[103.939, 116.779, 123.68],
std=[1., 1., 1.]
)
img_height = 288
img_width = 800
cut_height = 240
dataset_path = './data/CULane'
dataset = dict(
train=dict(
type='CULane',
img_path=dataset_path,
data_list='train_gt.txt',
),
val=dict(
type='CULane',
img_path=dataset_path,
data_list='test.txt',
),
test=dict(
type='CULane',
img_path=dataset_path,
data_list='test.txt',
)
)
workers = 12
num_classes = 4 + 1
ignore_label = 255
log_interval = 500