lili_code/datasets/culane.py

73 lines
2.6 KiB
Python

import os
import os.path as osp
import numpy as np
import torchvision
import utils.transforms as tf
from .base_dataset import BaseDataset
from .registry import DATASETS
import cv2
import torch
@DATASETS.register_module
class CULane(BaseDataset):
def __init__(self, img_path, data_list, cfg=None):
super().__init__(img_path, data_list, cfg=cfg)
self.ori_imgh = 590
self.ori_imgw = 1640
def init(self):
with open(osp.join(self.list_path, self.data_list)) as f:
for line in f:
line_split = line.strip().split(" ")
self.img_name_list.append(line_split[0])
self.full_img_path_list.append(self.img_path + line_split[0])
if not self.is_training:
continue
self.label_list.append(self.img_path + line_split[1])
self.exist_list.append(
np.array([int(line_split[2]), int(line_split[3]),
int(line_split[4]), int(line_split[5])]))
def transform_train(self):
train_transform = torchvision.transforms.Compose([
tf.GroupRandomRotation(degree=(-2, 2)),
tf.GroupRandomHorizontalFlip(),
tf.SampleResize((self.cfg.img_width, self.cfg.img_height)),
tf.GroupNormalize(mean=(self.cfg.img_norm['mean'], (0, )), std=(
self.cfg.img_norm['std'], (1, ))),
])
return train_transform
def probmap2lane(self, probmaps, exists, pts=18):
coords = []
probmaps = probmaps[1:, ...]
exists = exists > 0.5
for probmap, exist in zip(probmaps, exists):
if exist == 0:
continue
probmap = cv2.blur(probmap, (9, 9), borderType=cv2.BORDER_REPLICATE)
thr = 0.3
coordinate = np.zeros(pts)
cut_height = self.cfg.cut_height
for i in range(pts):
line = probmap[round(
self.cfg.img_height-i*20/(self.ori_imgh-cut_height)*self.cfg.img_height)-1]
if np.max(line) > thr:
coordinate[i] = np.argmax(line)+1
if np.sum(coordinate > 0) < 2:
continue
img_coord = np.zeros((pts, 2))
img_coord[:, :] = -1
for idx, value in enumerate(coordinate):
if value > 0:
img_coord[idx][0] = round(value*self.ori_imgw/self.cfg.img_width-1)
img_coord[idx][1] = round(self.ori_imgh-idx*20-1)
img_coord = img_coord.astype(int)
coords.append(img_coord)
return coords