120 lines
3.5 KiB
Python
120 lines
3.5 KiB
Python
|
from collections import namedtuple
|
||
|
import torch
|
||
|
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
||
|
|
||
|
"""
|
||
|
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
||
|
"""
|
||
|
|
||
|
|
||
|
class Flatten(Module):
|
||
|
def forward(self, input):
|
||
|
return input.view(input.size(0), -1)
|
||
|
|
||
|
|
||
|
def l2_norm(input, axis=1):
|
||
|
norm = torch.norm(input, 2, axis, True)
|
||
|
output = torch.div(input, norm)
|
||
|
return output
|
||
|
|
||
|
|
||
|
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
||
|
""" A named tuple describing a ResNet block. """
|
||
|
|
||
|
|
||
|
def get_block(in_channel, depth, num_units, stride=2):
|
||
|
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
||
|
|
||
|
|
||
|
def get_blocks(num_layers):
|
||
|
if num_layers == 50:
|
||
|
blocks = [
|
||
|
get_block(in_channel=64, depth=64, num_units=3),
|
||
|
get_block(in_channel=64, depth=128, num_units=4),
|
||
|
get_block(in_channel=128, depth=256, num_units=14),
|
||
|
get_block(in_channel=256, depth=512, num_units=3)
|
||
|
]
|
||
|
elif num_layers == 100:
|
||
|
blocks = [
|
||
|
get_block(in_channel=64, depth=64, num_units=3),
|
||
|
get_block(in_channel=64, depth=128, num_units=13),
|
||
|
get_block(in_channel=128, depth=256, num_units=30),
|
||
|
get_block(in_channel=256, depth=512, num_units=3)
|
||
|
]
|
||
|
elif num_layers == 152:
|
||
|
blocks = [
|
||
|
get_block(in_channel=64, depth=64, num_units=3),
|
||
|
get_block(in_channel=64, depth=128, num_units=8),
|
||
|
get_block(in_channel=128, depth=256, num_units=36),
|
||
|
get_block(in_channel=256, depth=512, num_units=3)
|
||
|
]
|
||
|
else:
|
||
|
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
||
|
return blocks
|
||
|
|
||
|
|
||
|
class SEModule(Module):
|
||
|
def __init__(self, channels, reduction):
|
||
|
super(SEModule, self).__init__()
|
||
|
self.avg_pool = AdaptiveAvgPool2d(1)
|
||
|
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
||
|
self.relu = ReLU(inplace=True)
|
||
|
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
||
|
self.sigmoid = Sigmoid()
|
||
|
|
||
|
def forward(self, x):
|
||
|
module_input = x
|
||
|
x = self.avg_pool(x)
|
||
|
x = self.fc1(x)
|
||
|
x = self.relu(x)
|
||
|
x = self.fc2(x)
|
||
|
x = self.sigmoid(x)
|
||
|
return module_input * x
|
||
|
|
||
|
|
||
|
class bottleneck_IR(Module):
|
||
|
def __init__(self, in_channel, depth, stride):
|
||
|
super(bottleneck_IR, self).__init__()
|
||
|
if in_channel == depth:
|
||
|
self.shortcut_layer = MaxPool2d(1, stride)
|
||
|
else:
|
||
|
self.shortcut_layer = Sequential(
|
||
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
||
|
BatchNorm2d(depth)
|
||
|
)
|
||
|
self.res_layer = Sequential(
|
||
|
BatchNorm2d(in_channel),
|
||
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
||
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
shortcut = self.shortcut_layer(x)
|
||
|
res = self.res_layer(x)
|
||
|
return res + shortcut
|
||
|
|
||
|
|
||
|
class bottleneck_IR_SE(Module):
|
||
|
def __init__(self, in_channel, depth, stride):
|
||
|
super(bottleneck_IR_SE, self).__init__()
|
||
|
if in_channel == depth:
|
||
|
self.shortcut_layer = MaxPool2d(1, stride)
|
||
|
else:
|
||
|
self.shortcut_layer = Sequential(
|
||
|
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
||
|
BatchNorm2d(depth)
|
||
|
)
|
||
|
self.res_layer = Sequential(
|
||
|
BatchNorm2d(in_channel),
|
||
|
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
||
|
PReLU(depth),
|
||
|
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
||
|
BatchNorm2d(depth),
|
||
|
SEModule(depth, 16)
|
||
|
)
|
||
|
|
||
|
def forward(self, x):
|
||
|
shortcut = self.shortcut_layer(x)
|
||
|
res = self.res_layer(x)
|
||
|
return res + shortcut
|