liyin_code/models/stylegan3/run_optimization3.py

268 lines
12 KiB
Python
Raw Normal View History

2024-07-04 17:06:52 +08:00
import argparse
import math
import os
import pickle
import torchvision
from torch import optim
from tqdm import tqdm
import torch
import clip
class CLIPLoss(torch.nn.Module):
def __init__(self, opts):
super(CLIPLoss, self).__init__()
self.model, self.preprocess = clip.load("ViT-B/32", device="cuda")
self.upsample = torch.nn.Upsample(scale_factor=7)
self.avg_pool = torch.nn.AvgPool2d(kernel_size=opts.stylegan_size // 32)
def forward(self, image, text):
image = self.avg_pool(self.upsample(image))
similarity = 1 - self.model(image, text)[0] / 100
return similarity
from torch import nn
import sys
sys.path.append('/home/ly/StyleCLIP-main/models/facial_recognition')
from model_irse import Backbone
class IDLoss(nn.Module):
def __init__(self, opts):
super(IDLoss, self).__init__()
print('Loading ResNet ArcFace')
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
self.facenet.load_state_dict(torch.load(opts.ir_se50_weights))
self.pool = torch.nn.AdaptiveAvgPool2d((256, 256))
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
self.facenet.eval()
self.facenet.cuda()
self.opts = opts
def extract_feats(self, x):
if x.shape[2] != 256:
x = self.pool(x)
x = x[:, :, 35:223, 32:220] # Crop interesting region
x = self.face_pool(x)
x_feats = self.facenet(x)
return x_feats
def forward(self, y_hat, y):
n_samples = y.shape[0]
y_feats = self.extract_feats(y) # Otherwise use the feature from there
y_hat_feats = self.extract_feats(y_hat)
y_feats = y_feats.detach()
loss = 0
sim_improvement = 0
count = 0
for i in range(n_samples):
diff_target = y_hat_feats[i].dot(y_feats[i])
loss += 1 - diff_target
count += 1
return loss / count, sim_improvement / count
sys.path.append('/home/ly/StyleCLIP-main/mapper/training')
from train_utils import STYLESPACE_DIMENSIONS
from model_3 import Generator
from model_3 import SynthesisNetwork
from model_3 import SynthesisLayer
sys.path.append('/home/ly/StyleCLIP-main')
from utils import ensure_checkpoint_exists
STYLESPACE_INDICES_WITHOUT_TORGB = [i for i in range(len(STYLESPACE_DIMENSIONS)) if i not in list(range(1, len(STYLESPACE_DIMENSIONS), 3))]
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
lr_ramp = min(1, (1 - t) / rampdown)
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
lr_ramp = lr_ramp * min(1, t / rampup)
return initial_lr * lr_ramp
def main(args):
ensure_checkpoint_exists(args.ckpt)
# 把描述加载进clip预训练模型里面去
text_inputs = torch.cat([clip.tokenize(args.description)]).cuda()
# print('text_input是 ', text_inputs)
#tokenizer clip分词的机制 依据规则
#以及词汇表的总量
'''
--description "a person with purple hair"
tensor([[49406, 320, 2533, 593, 5496, 2225, 49407, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
dtype=torch.int32)
--description "a person with red hair"
tensor([[49406, 320, 2533, 593, 736, 2225, 49407, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
dtype=torch.int32)
'''
os.makedirs(args.results_dir, exist_ok=True)
#改成stylegan3的输入
# with open('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl', 'rb') as f:
# G = pickle.load(f)['G_ema'].cuda() # torch.nn.Module
# z = torch.randn([1, G.z_dim]).cuda() # latent codes
# c = None # class labels (not used in this example)
# img = G(z, c) # NCHW, float32, dynamic range [-1, +1], no truncation
# g_ema = Generator(512, 0, 512,args.stylegan_size, 3) #512,0,512,1024,3
# with open('/home/ly/StyleCLIP-main/models/stylegan3/torch_utils/stylegan3-r-afhqv2-512x512.pkl', 'rb') as f:
#stylegan3-r-ffhqu-1024x1024.pkl 生成图片的效果欠佳 别用
#stylegan3-t-ffhq-1024x1024.pkl 生成效果一般 loss值较好
#stylegan3-r-ffhq-1024x1024.pkl 折中
#stylegan3-t-ffhqu-1024x1024.pkl 生成图片可以 loss较差
with open('/home/ly/StyleCLIP-main/pretrained_models/stylegan3-t-ffhq-1024x1024.pkl', 'rb') as f: #stylespace_dimensions [512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 512, 256, 256, 256, 128, 128, 128, 64, 64, 64, 32, 32]
# new_p = pickle.load(f)
# print(new_p)
# print("new_p")
# print(new_p.keys())
# G_ema.load_state_dict(pickle.load(f)['G_ema'].cuda(), strict=False) 这种方式模型加载不进来
g_ema = pickle.load(f)['G_ema'].cuda() # torch.nn.Module 这种方式推演三百步的图片平均要4分钟
z = torch.randn([1, g_ema.z_dim]).cuda() # latent codes
c = None # class labels (not used in this example)
#g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False)
# 将模型对象设置为评估模式
g_ema.eval()
#更改cuda卡号
g_ema = g_ema.cuda()
# device = torch.cuda.current_device()
# print('cuda:',device)
mean_latent = torch.randn([1, g_ema.z_dim]).cuda()
torch.save(mean_latent,'/home/ly/StyleCLIP-main/pretrained_models/latent_code/style3.pt')
# print('mean_latent: ', mean_latent)
if args.latent_path:
latent_code_init = torch.load(args.latent_path).cuda()
# elif args.mode == "edit":
# latent_code_init_not_trunc = torch.randn(1, 512).cuda()
# with torch.no_grad():
# _, latent_code_init, _ = g_ema([latent_code_init_not_trunc], return_latents=True,
# truncation=args.truncation, truncation_latent=mean_latent)
else:
# latent_code_init = mean_latent.detach().clone().repeat(1, 18, 1) #在维度1上重复18次
latent_code_init = mean_latent.detach().clone()
# def forward(self, z, c, truncation_psi=1, truncation_cutoff=None, update_emas=False, **synthesis_kwargs):
with torch.no_grad():
print("mean_latent ", mean_latent.shape)
# img_orig, _ = g_ema([latent_code_init], c, input_is_latent=True, randomize_noise=False)
img_orig = g_ema(latent_code_init, c)
if args.work_in_stylespace:
with torch.no_grad():
_, _, latent_code_init = g_ema([latent_code_init], input_is_latent=True, return_latents=True)
latent = [s.detach().clone() for s in latent_code_init]
for c, s in enumerate(latent):
if c in STYLESPACE_INDICES_WITHOUT_TORGB:
s.requires_grad = True
else:
latent = latent_code_init.detach().clone()
latent.requires_grad = True
clip_loss = CLIPLoss(args)
id_loss = IDLoss(args)
if args.work_in_stylespace:
optimizer = optim.Adam(latent, lr=args.lr)
else:
optimizer = optim.Adam([latent], lr=args.lr)
pbar = tqdm(range(args.step))
for i in pbar:
t = i / args.step
lr = get_lr(t, args.lr)
optimizer.param_groups[0]["lr"] = lr
img_gen = g_ema(latent,c)
c_loss = clip_loss(img_gen, text_inputs)
if args.id_lambda > 0:
#身份损失
i_loss = id_loss(img_gen, img_orig)[0]
else:
i_loss = 0
if args.mode == "edit":
if args.work_in_stylespace:
l2_loss = sum([((latent_code_init[c] - latent[c]) ** 2).sum() for c in range(len(latent_code_init))])
else:
#与潜在空间的L2距离
l2_loss = ((latent_code_init - latent) ** 2).sum()
loss = c_loss + args.l2_lambda * l2_loss + args.id_lambda * i_loss
else:
loss = c_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
pbar.set_description(
(
f"loss: {loss.item():.4f};"
)
)
if args.save_intermediate_image_every > 0 and i % args.save_intermediate_image_every == 0:
with torch.no_grad():
img_gen = g_ema(latent, c)
torchvision.utils.save_image(img_gen, f"results/stygan3Clip/{str(i).zfill(5)}.jpg", normalize=True, range=(-1, 1))
if args.mode == "edit":
final_result = torch.cat([img_orig, img_gen])
else:
final_result = img_gen
return final_result
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--description", type=str, default="a person with purple hair", help="the text that guides the editing/generation")
parser.add_argument("--ckpt", type=str, default="../pretrained_models/stylegan2-ffhq-config-f.pt", help="pretrained StyleGAN2 weights")
parser.add_argument("--stylegan_size", type=int, default=1024, help="StyleGAN resolution")
parser.add_argument("--lr_rampup", type=float, default=0.05)
parser.add_argument("--lr", type=float, default=0.1)
parser.add_argument("--step", type=int, default=300, help="number of optimization steps")
parser.add_argument("--mode", type=str, default="edit", choices=["edit", "free_generation"], help="choose between edit an image an generate a free one")
parser.add_argument("--l2_lambda", type=float, default=0.008, help="weight of the latent distance (used for editing only)")
parser.add_argument("--id_lambda", type=float, default=0.000, help="weight of id loss (used for editing only)")
parser.add_argument("--latent_path", type=str, default=None, help="starts the optimization from the given latent code if provided. Otherwose, starts from"
"the mean latent in a free generation, and from a random one in editing. "
"Expects a .pt format")
parser.add_argument("--truncation", type=float, default=1, help="used only for the initial latent vector, and only when a latent code path is"
"not provided")
parser.add_argument('--work_in_stylespace', default=False, action='store_true')
parser.add_argument("--save_intermediate_image_every", type=int, default=20, help="if > 0 then saves intermidate results during the optimization")
parser.add_argument("--results_dir", type=str, default="results")
parser.add_argument('--ir_se50_weights', default='../pretrained_models/model_ir_se50.pth', type=str,
help="Path to facial recognition network used in ID loss")
args = parser.parse_args()
result_image = main(args)
torchvision.utils.save_image(result_image.detach().cpu(), os.path.join(args.results_dir, "final_result.jpg"), normalize=True, scale_each=True, range=(-1, 1))