385 lines
16 KiB
Python
385 lines
16 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
# and proprietary rights in and to this software, related documentation
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
# distribution of this software and related documentation without an express
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
"""Custom PyTorch ops for efficient resampling of 2D images."""
|
|
|
|
import os
|
|
import warnings
|
|
import numpy as np
|
|
import torch
|
|
import traceback
|
|
|
|
from .. import custom_ops
|
|
from .. import misc
|
|
from . import conv2d_gradfix
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
_inited = False
|
|
_plugin = None
|
|
|
|
def _init():
|
|
global _inited, _plugin
|
|
if not _inited:
|
|
sources = ['upfirdn2d.cpp', 'upfirdn2d.cu']
|
|
sources = [os.path.join(os.path.dirname(__file__), s) for s in sources]
|
|
try:
|
|
_plugin = custom_ops.get_plugin('upfirdn2d_plugin', sources=sources, extra_cuda_cflags=['--use_fast_math'])
|
|
except:
|
|
warnings.warn('Failed to build CUDA kernels for upfirdn2d. Falling back to slow reference implementation. Details:\n\n' + traceback.format_exc())
|
|
return _plugin is not None
|
|
|
|
def _parse_scaling(scaling):
|
|
if isinstance(scaling, int):
|
|
scaling = [scaling, scaling]
|
|
assert isinstance(scaling, (list, tuple))
|
|
assert all(isinstance(x, int) for x in scaling)
|
|
sx, sy = scaling
|
|
assert sx >= 1 and sy >= 1
|
|
return sx, sy
|
|
|
|
def _parse_padding(padding):
|
|
if isinstance(padding, int):
|
|
padding = [padding, padding]
|
|
assert isinstance(padding, (list, tuple))
|
|
assert all(isinstance(x, int) for x in padding)
|
|
if len(padding) == 2:
|
|
padx, pady = padding
|
|
padding = [padx, padx, pady, pady]
|
|
padx0, padx1, pady0, pady1 = padding
|
|
return padx0, padx1, pady0, pady1
|
|
|
|
def _get_filter_size(f):
|
|
if f is None:
|
|
return 1, 1
|
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
|
fw = f.shape[-1]
|
|
fh = f.shape[0]
|
|
with misc.suppress_tracer_warnings():
|
|
fw = int(fw)
|
|
fh = int(fh)
|
|
misc.assert_shape(f, [fh, fw][:f.ndim])
|
|
assert fw >= 1 and fh >= 1
|
|
return fw, fh
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def setup_filter(f, device=torch.device('cpu'), normalize=True, flip_filter=False, gain=1, separable=None):
|
|
r"""Convenience function to setup 2D FIR filter for `upfirdn2d()`.
|
|
|
|
Args:
|
|
f: Torch tensor, numpy array, or python list of the shape
|
|
`[filter_height, filter_width]` (non-separable),
|
|
`[filter_taps]` (separable),
|
|
`[]` (impulse), or
|
|
`None` (identity).
|
|
device: Result device (default: cpu).
|
|
normalize: Normalize the filter so that it retains the magnitude
|
|
for constant input signal (DC)? (default: True).
|
|
flip_filter: Flip the filter? (default: False).
|
|
gain: Overall scaling factor for signal magnitude (default: 1).
|
|
separable: Return a separable filter? (default: select automatically).
|
|
|
|
Returns:
|
|
Float32 tensor of the shape
|
|
`[filter_height, filter_width]` (non-separable) or
|
|
`[filter_taps]` (separable).
|
|
"""
|
|
# Validate.
|
|
if f is None:
|
|
f = 1
|
|
f = torch.as_tensor(f, dtype=torch.float32)
|
|
assert f.ndim in [0, 1, 2]
|
|
assert f.numel() > 0
|
|
if f.ndim == 0:
|
|
f = f[np.newaxis]
|
|
|
|
# Separable?
|
|
if separable is None:
|
|
separable = (f.ndim == 1 and f.numel() >= 8)
|
|
if f.ndim == 1 and not separable:
|
|
f = f.ger(f)
|
|
assert f.ndim == (1 if separable else 2)
|
|
|
|
# Apply normalize, flip, gain, and device.
|
|
if normalize:
|
|
f /= f.sum()
|
|
if flip_filter:
|
|
f = f.flip(list(range(f.ndim)))
|
|
f = f * (gain ** (f.ndim / 2))
|
|
f = f.to(device=device)
|
|
return f
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def upfirdn2d(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
|
r"""Pad, upsample, filter, and downsample a batch of 2D images.
|
|
|
|
Performs the following sequence of operations for each channel:
|
|
|
|
1. Upsample the image by inserting N-1 zeros after each pixel (`up`).
|
|
|
|
2. Pad the image with the specified number of zeros on each side (`padding`).
|
|
Negative padding corresponds to cropping the image.
|
|
|
|
3. Convolve the image with the specified 2D FIR filter (`f`), shrinking it
|
|
so that the footprint of all output pixels lies within the input image.
|
|
|
|
4. Downsample the image by keeping every Nth pixel (`down`).
|
|
|
|
This sequence of operations bears close resemblance to scipy.signal.upfirdn().
|
|
The fused op is considerably more efficient than performing the same calculation
|
|
using standard PyTorch ops. It supports gradients of arbitrary order.
|
|
|
|
Args:
|
|
x: Float32/float64/float16 input tensor of the shape
|
|
`[batch_size, num_channels, in_height, in_width]`.
|
|
f: Float32 FIR filter of the shape
|
|
`[filter_height, filter_width]` (non-separable),
|
|
`[filter_taps]` (separable), or
|
|
`None` (identity).
|
|
up: Integer upsampling factor. Can be a single int or a list/tuple
|
|
`[x, y]` (default: 1).
|
|
down: Integer downsampling factor. Can be a single int or a list/tuple
|
|
`[x, y]` (default: 1).
|
|
padding: Padding with respect to the upsampled image. Can be a single number
|
|
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
|
(default: 0).
|
|
flip_filter: False = convolution, True = correlation (default: False).
|
|
gain: Overall scaling factor for signal magnitude (default: 1).
|
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
|
|
|
Returns:
|
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
|
"""
|
|
assert isinstance(x, torch.Tensor)
|
|
assert impl in ['ref', 'cuda']
|
|
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
|
return _upfirdn2d_cuda(up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain).apply(x, f)
|
|
return _upfirdn2d_ref(x, f, up=up, down=down, padding=padding, flip_filter=flip_filter, gain=gain)
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
@misc.profiled_function
|
|
def _upfirdn2d_ref(x, f, up=1, down=1, padding=0, flip_filter=False, gain=1):
|
|
"""Slow reference implementation of `upfirdn2d()` using standard PyTorch ops.
|
|
"""
|
|
# Validate arguments.
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
|
if f is None:
|
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
|
assert f.dtype == torch.float32 and not f.requires_grad
|
|
batch_size, num_channels, in_height, in_width = x.shape
|
|
upx, upy = _parse_scaling(up)
|
|
downx, downy = _parse_scaling(down)
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
|
|
|
# Upsample by inserting zeros.
|
|
x = x.reshape([batch_size, num_channels, in_height, 1, in_width, 1])
|
|
x = torch.nn.functional.pad(x, [0, upx - 1, 0, 0, 0, upy - 1])
|
|
x = x.reshape([batch_size, num_channels, in_height * upy, in_width * upx])
|
|
|
|
# Pad or crop.
|
|
x = torch.nn.functional.pad(x, [max(padx0, 0), max(padx1, 0), max(pady0, 0), max(pady1, 0)])
|
|
x = x[:, :, max(-pady0, 0) : x.shape[2] - max(-pady1, 0), max(-padx0, 0) : x.shape[3] - max(-padx1, 0)]
|
|
|
|
# Setup filter.
|
|
f = f * (gain ** (f.ndim / 2))
|
|
f = f.to(x.dtype)
|
|
if not flip_filter:
|
|
f = f.flip(list(range(f.ndim)))
|
|
|
|
# Convolve with the filter.
|
|
f = f[np.newaxis, np.newaxis].repeat([num_channels, 1] + [1] * f.ndim)
|
|
if f.ndim == 4:
|
|
x = conv2d_gradfix.conv2d(input=x, weight=f, groups=num_channels)
|
|
else:
|
|
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(2), groups=num_channels)
|
|
x = conv2d_gradfix.conv2d(input=x, weight=f.unsqueeze(3), groups=num_channels)
|
|
|
|
# Downsample by throwing away pixels.
|
|
x = x[:, :, ::downy, ::downx]
|
|
return x
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
_upfirdn2d_cuda_cache = dict()
|
|
|
|
def _upfirdn2d_cuda(up=1, down=1, padding=0, flip_filter=False, gain=1):
|
|
"""Fast CUDA implementation of `upfirdn2d()` using custom ops.
|
|
"""
|
|
# Parse arguments.
|
|
upx, upy = _parse_scaling(up)
|
|
downx, downy = _parse_scaling(down)
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
|
|
|
# Lookup from cache.
|
|
key = (upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
|
if key in _upfirdn2d_cuda_cache:
|
|
return _upfirdn2d_cuda_cache[key]
|
|
|
|
# Forward op.
|
|
class Upfirdn2dCuda(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, x, f): # pylint: disable=arguments-differ
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 4
|
|
if f is None:
|
|
f = torch.ones([1, 1], dtype=torch.float32, device=x.device)
|
|
assert isinstance(f, torch.Tensor) and f.ndim in [1, 2]
|
|
y = x
|
|
if f.ndim == 2:
|
|
y = _plugin.upfirdn2d(y, f, upx, upy, downx, downy, padx0, padx1, pady0, pady1, flip_filter, gain)
|
|
else:
|
|
y = _plugin.upfirdn2d(y, f.unsqueeze(0), upx, 1, downx, 1, padx0, padx1, 0, 0, flip_filter, np.sqrt(gain))
|
|
y = _plugin.upfirdn2d(y, f.unsqueeze(1), 1, upy, 1, downy, 0, 0, pady0, pady1, flip_filter, np.sqrt(gain))
|
|
ctx.save_for_backward(f)
|
|
ctx.x_shape = x.shape
|
|
return y
|
|
|
|
@staticmethod
|
|
def backward(ctx, dy): # pylint: disable=arguments-differ
|
|
f, = ctx.saved_tensors
|
|
_, _, ih, iw = ctx.x_shape
|
|
_, _, oh, ow = dy.shape
|
|
fw, fh = _get_filter_size(f)
|
|
p = [
|
|
fw - padx0 - 1,
|
|
iw * upx - ow * downx + padx0 - upx + 1,
|
|
fh - pady0 - 1,
|
|
ih * upy - oh * downy + pady0 - upy + 1,
|
|
]
|
|
dx = None
|
|
df = None
|
|
|
|
if ctx.needs_input_grad[0]:
|
|
dx = _upfirdn2d_cuda(up=down, down=up, padding=p, flip_filter=(not flip_filter), gain=gain).apply(dy, f)
|
|
|
|
assert not ctx.needs_input_grad[1]
|
|
return dx, df
|
|
|
|
# Add to cache.
|
|
_upfirdn2d_cuda_cache[key] = Upfirdn2dCuda
|
|
return Upfirdn2dCuda
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def filter2d(x, f, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
|
r"""Filter a batch of 2D images using the given 2D FIR filter.
|
|
|
|
By default, the result is padded so that its shape matches the input.
|
|
User-specified padding is applied on top of that, with negative values
|
|
indicating cropping. Pixels outside the image are assumed to be zero.
|
|
|
|
Args:
|
|
x: Float32/float64/float16 input tensor of the shape
|
|
`[batch_size, num_channels, in_height, in_width]`.
|
|
f: Float32 FIR filter of the shape
|
|
`[filter_height, filter_width]` (non-separable),
|
|
`[filter_taps]` (separable), or
|
|
`None` (identity).
|
|
padding: Padding with respect to the output. Can be a single number or a
|
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
|
(default: 0).
|
|
flip_filter: False = convolution, True = correlation (default: False).
|
|
gain: Overall scaling factor for signal magnitude (default: 1).
|
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
|
|
|
Returns:
|
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
|
"""
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
|
fw, fh = _get_filter_size(f)
|
|
p = [
|
|
padx0 + fw // 2,
|
|
padx1 + (fw - 1) // 2,
|
|
pady0 + fh // 2,
|
|
pady1 + (fh - 1) // 2,
|
|
]
|
|
return upfirdn2d(x, f, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def upsample2d(x, f, up=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
|
r"""Upsample a batch of 2D images using the given 2D FIR filter.
|
|
|
|
By default, the result is padded so that its shape is a multiple of the input.
|
|
User-specified padding is applied on top of that, with negative values
|
|
indicating cropping. Pixels outside the image are assumed to be zero.
|
|
|
|
Args:
|
|
x: Float32/float64/float16 input tensor of the shape
|
|
`[batch_size, num_channels, in_height, in_width]`.
|
|
f: Float32 FIR filter of the shape
|
|
`[filter_height, filter_width]` (non-separable),
|
|
`[filter_taps]` (separable), or
|
|
`None` (identity).
|
|
up: Integer upsampling factor. Can be a single int or a list/tuple
|
|
`[x, y]` (default: 1).
|
|
padding: Padding with respect to the output. Can be a single number or a
|
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
|
(default: 0).
|
|
flip_filter: False = convolution, True = correlation (default: False).
|
|
gain: Overall scaling factor for signal magnitude (default: 1).
|
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
|
|
|
Returns:
|
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
|
"""
|
|
upx, upy = _parse_scaling(up)
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
|
fw, fh = _get_filter_size(f)
|
|
p = [
|
|
padx0 + (fw + upx - 1) // 2,
|
|
padx1 + (fw - upx) // 2,
|
|
pady0 + (fh + upy - 1) // 2,
|
|
pady1 + (fh - upy) // 2,
|
|
]
|
|
return upfirdn2d(x, f, up=up, padding=p, flip_filter=flip_filter, gain=gain*upx*upy, impl=impl)
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def downsample2d(x, f, down=2, padding=0, flip_filter=False, gain=1, impl='cuda'):
|
|
r"""Downsample a batch of 2D images using the given 2D FIR filter.
|
|
|
|
By default, the result is padded so that its shape is a fraction of the input.
|
|
User-specified padding is applied on top of that, with negative values
|
|
indicating cropping. Pixels outside the image are assumed to be zero.
|
|
|
|
Args:
|
|
x: Float32/float64/float16 input tensor of the shape
|
|
`[batch_size, num_channels, in_height, in_width]`.
|
|
f: Float32 FIR filter of the shape
|
|
`[filter_height, filter_width]` (non-separable),
|
|
`[filter_taps]` (separable), or
|
|
`None` (identity).
|
|
down: Integer downsampling factor. Can be a single int or a list/tuple
|
|
`[x, y]` (default: 1).
|
|
padding: Padding with respect to the input. Can be a single number or a
|
|
list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
|
|
(default: 0).
|
|
flip_filter: False = convolution, True = correlation (default: False).
|
|
gain: Overall scaling factor for signal magnitude (default: 1).
|
|
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
|
|
|
|
Returns:
|
|
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
|
|
"""
|
|
downx, downy = _parse_scaling(down)
|
|
padx0, padx1, pady0, pady1 = _parse_padding(padding)
|
|
fw, fh = _get_filter_size(f)
|
|
p = [
|
|
padx0 + (fw - downx + 1) // 2,
|
|
padx1 + (fw - downx) // 2,
|
|
pady0 + (fh - downy + 1) // 2,
|
|
pady1 + (fh - downy) // 2,
|
|
]
|
|
return upfirdn2d(x, f, down=down, padding=p, flip_filter=flip_filter, gain=gain, impl=impl)
|
|
|
|
#----------------------------------------------------------------------------
|