182 lines
8.2 KiB
Python
182 lines
8.2 KiB
Python
import argparse
|
||
import math
|
||
import os
|
||
|
||
import torch
|
||
import torchvision
|
||
from torch import optim
|
||
from tqdm import tqdm
|
||
|
||
from criteria.clip_loss import CLIPLoss
|
||
from criteria.id_loss import IDLoss
|
||
from mapper.training.train_utils import STYLESPACE_DIMENSIONS
|
||
from models.stylegan2.model import Generator
|
||
import clip
|
||
from utils import ensure_checkpoint_exists
|
||
|
||
STYLESPACE_INDICES_WITHOUT_TORGB = [i for i in range(len(STYLESPACE_DIMENSIONS)) if i not in list(range(1, len(STYLESPACE_DIMENSIONS), 3))]
|
||
|
||
def get_lr(t, initial_lr, rampdown=0.25, rampup=0.05):
|
||
lr_ramp = min(1, (1 - t) / rampdown)
|
||
lr_ramp = 0.5 - 0.5 * math.cos(lr_ramp * math.pi)
|
||
lr_ramp = lr_ramp * min(1, t / rampup)
|
||
|
||
return initial_lr * lr_ramp
|
||
|
||
|
||
def main(args):
|
||
ensure_checkpoint_exists(args.ckpt)
|
||
# 把描述加载进clip预训练模型里面去
|
||
text_inputs = torch.cat([clip.tokenize(args.description)]).cuda()
|
||
# print('text_input是: ', text_inputs)
|
||
'''
|
||
--description "a person with purple hair"
|
||
tensor([[49406, 320, 2533, 593, 5496, 2225, 49407, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
|
||
dtype=torch.int32)
|
||
--description "a person with red hair"
|
||
tensor([[49406, 320, 2533, 593, 736, 2225, 49407, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
|
||
0, 0, 0, 0, 0, 0, 0]], device='cuda:0',
|
||
dtype=torch.int32)
|
||
'''
|
||
|
||
os.makedirs(args.results_dir, exist_ok=True)
|
||
|
||
g_ema = Generator(args.stylegan_size, 512, 8)
|
||
g_ema.load_state_dict(torch.load(args.ckpt)["g_ema"], strict=False)
|
||
# 将模型对象设置为评估模式
|
||
g_ema.eval()
|
||
#更改cuda卡号
|
||
g_ema = g_ema.cuda()
|
||
# device = torch.cuda.current_device()
|
||
# print('cuda:',device)
|
||
mean_latent = g_ema.mean_latent(4096)
|
||
# print('mean_latent: ', mean_latent.shape ) #[1,512]
|
||
|
||
|
||
if args.latent_path:
|
||
latent_code_init = torch.load(args.latent_path).cuda()
|
||
with torch.no_grad():
|
||
_, latent_code_init, _ = g_ema([latent_code_init], return_latents=True,
|
||
truncation=args.truncation, truncation_latent=mean_latent)
|
||
elif args.mode == "edit":
|
||
latent_code_init_not_trunc = torch.randn(1, 512).cuda()
|
||
with torch.no_grad():
|
||
_, latent_code_init, _ = g_ema([latent_code_init_not_trunc], return_latents=True,
|
||
truncation=args.truncation, truncation_latent=mean_latent)
|
||
else:
|
||
latent_code_init = mean_latent.detach().clone().repeat(1, 18, 1)
|
||
print(latent_code_init) #在维度1上重复18次 torch.Size([1, 18, 512])
|
||
with torch.no_grad():
|
||
img_orig, _ = g_ema([latent_code_init], input_is_latent=True, randomize_noise=False)
|
||
|
||
if args.work_in_stylespace:
|
||
with torch.no_grad():
|
||
_, _, latent_code_init = g_ema([latent_code_init], input_is_latent=True, return_latents=True)
|
||
latent = [s.detach().clone() for s in latent_code_init]
|
||
for c, s in enumerate(latent):
|
||
if c in STYLESPACE_INDICES_WITHOUT_TORGB:
|
||
s.requires_grad = True
|
||
else:
|
||
latent = latent_code_init.detach().clone()
|
||
latent.requires_grad = True
|
||
|
||
clip_loss = CLIPLoss(args)
|
||
id_loss = IDLoss(args)
|
||
|
||
if args.work_in_stylespace:
|
||
optimizer = optim.Adam(latent, lr=args.lr)
|
||
else:
|
||
optimizer = optim.Adam([latent], lr=args.lr)
|
||
|
||
pbar = tqdm(range(args.step))
|
||
|
||
for i in pbar:
|
||
t = i / args.step
|
||
lr = get_lr(t, args.lr)
|
||
optimizer.param_groups[0]["lr"] = lr
|
||
|
||
img_gen, _ = g_ema([latent], input_is_latent=True, randomize_noise=False, input_is_stylespace=args.work_in_stylespace)
|
||
|
||
c_loss = clip_loss(img_gen, text_inputs)
|
||
|
||
if args.id_lambda > 0:
|
||
i_loss = id_loss(img_gen, img_orig)[0]
|
||
else:
|
||
i_loss = 0
|
||
|
||
if args.mode == "edit":
|
||
if args.work_in_stylespace:
|
||
l2_loss = sum([((latent_code_init[c] - latent[c]) ** 2).sum() for c in range(len(latent_code_init))])
|
||
else:
|
||
l2_loss = ((latent_code_init - latent) ** 2).sum()
|
||
loss = c_loss + args.l2_lambda * l2_loss + args.id_lambda * i_loss
|
||
else:
|
||
loss = c_loss
|
||
|
||
optimizer.zero_grad()
|
||
loss.backward()
|
||
optimizer.step()
|
||
|
||
pbar.set_description(
|
||
(
|
||
f"loss: {loss.item():.4f};"
|
||
)
|
||
)
|
||
if args.save_intermediate_image_every > 0 and i % args.save_intermediate_image_every == 0:
|
||
with torch.no_grad():
|
||
img_gen, _ = g_ema([latent], input_is_latent=True, randomize_noise=False, input_is_stylespace=args.work_in_stylespace)
|
||
|
||
torchvision.utils.save_image(img_gen, f"results/{str(i).zfill(5)}.jpg", normalize=True, range=(-1, 1))
|
||
|
||
if args.mode == "edit":
|
||
final_result = torch.cat([img_orig, img_gen])
|
||
else:
|
||
final_result = img_gen
|
||
|
||
return final_result
|
||
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument("--description", type=str, default="a person with purple hair", help="the text that guides the editing/generation")
|
||
parser.add_argument("--ckpt", type=str, default="../pretrained_models/stylegan2-ffhq-config-f.pt", help="pretrained StyleGAN2 weights")
|
||
parser.add_argument("--stylegan_size", type=int, default=1024, help="StyleGAN resolution")
|
||
parser.add_argument("--lr_rampup", type=float, default=0.05)
|
||
parser.add_argument("--lr", type=float, default=0.1)
|
||
parser.add_argument("--step", type=int, default=300, help="number of optimization steps")
|
||
parser.add_argument("--mode", type=str, default="edit", choices=["edit", "free_generation"], help="choose between edit an image an generate a free one")
|
||
parser.add_argument("--l2_lambda", type=float, default=0.008, help="weight of the latent distance (used for editing only)")
|
||
parser.add_argument("--id_lambda", type=float, default=0.000, help="weight of id loss (used for editing only)")
|
||
parser.add_argument("--latent_path", type=str, default=None, help="starts the optimization from the given latent code if provided. Otherwose, starts from"
|
||
"the mean latent in a free generation, and from a random one in editing. "
|
||
"Expects a .pt format")
|
||
parser.add_argument("--truncation", type=float, default=0.7, help="used only for the initial latent vector, and only when a latent code path is"
|
||
"not provided")
|
||
parser.add_argument('--work_in_stylespace', default=False, action='store_true')
|
||
parser.add_argument("--save_intermediate_image_every", type=int, default=20, help="if > 0 then saves intermidate results during the optimization")
|
||
parser.add_argument("--results_dir", type=str, default="results")
|
||
parser.add_argument('--ir_se50_weights', default='../pretrained_models/model_ir_se50.pth', type=str,
|
||
help="Path to facial recognition network used in ID loss")
|
||
|
||
args = parser.parse_args()
|
||
|
||
result_image = main(args)
|
||
|
||
torchvision.utils.save_image(result_image.detach().cpu(), os.path.join(args.results_dir, "final_result.jpg"), normalize=True, scale_each=True, range=(-1, 1))
|
||
|
||
|