72 lines
2.4 KiB
Python
72 lines
2.4 KiB
Python
|
import warnings
|
||
|
warnings.filterwarnings("ignore")
|
||
|
import torch
|
||
|
import argparse
|
||
|
from torch.utils.data import DataLoader
|
||
|
import os
|
||
|
import pandas as pd
|
||
|
import time
|
||
|
from dataset import AdvDataset
|
||
|
from model import get_model
|
||
|
from utils import BASE_ADV_PATH, accuracy, AverageMeter
|
||
|
|
||
|
def arg_parse():
|
||
|
parser = argparse.ArgumentParser(description='')
|
||
|
parser.add_argument('--adv_path', type=str, default='', help='the path of adversarial examples.')
|
||
|
parser.add_argument('--gpu', type=str, default='0', help='gpu device.')
|
||
|
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
|
||
|
help='input batch size for reference (default: 16)')
|
||
|
parser.add_argument('--model_name', type=str, default='', help='')
|
||
|
args = parser.parse_args()
|
||
|
args.adv_path = os.path.join(BASE_ADV_PATH, args.adv_path)
|
||
|
return args
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
args = arg_parse()
|
||
|
|
||
|
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
|
||
|
|
||
|
dataset = AdvDataset(args.model_name, args.adv_path)
|
||
|
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=0)
|
||
|
print (len(dataset))
|
||
|
|
||
|
model = get_model(args.model_name)
|
||
|
model.cuda()
|
||
|
model.eval()
|
||
|
|
||
|
top1 = AverageMeter()
|
||
|
top5 = AverageMeter()
|
||
|
batch_time = AverageMeter()
|
||
|
|
||
|
prediction = []
|
||
|
gts = []
|
||
|
with torch.no_grad():
|
||
|
end = time.time()
|
||
|
for batch_idx, batch_data in enumerate(data_loader):
|
||
|
batch_x = batch_data[0].cuda()
|
||
|
batch_y = batch_data[1].cuda()
|
||
|
batch_name = batch_data[2]
|
||
|
|
||
|
output = model(batch_x)
|
||
|
acc1, acc5 = accuracy(output.detach(), batch_y, topk=(1, 5))
|
||
|
top1.update(acc1.item(), batch_x.size(0))
|
||
|
top5.update(acc5.item(), batch_x.size(0))
|
||
|
|
||
|
batch_time.update(time.time() - end)
|
||
|
end = time.time()
|
||
|
|
||
|
_, pred = output.detach().topk(1, 1, True, True)
|
||
|
pred = pred.t()
|
||
|
prediction += list(torch.squeeze(pred.cpu()).numpy())
|
||
|
gts += list(batch_y.cpu().numpy())
|
||
|
success_count = 0
|
||
|
df = pd.DataFrame(columns = ['path', 'pre', 'gt'])
|
||
|
df['path'] = dataset.paths[:len(prediction)]
|
||
|
df['pre'] = prediction
|
||
|
df['gt'] = gts
|
||
|
for i in range(len(df['pre'])):
|
||
|
if df['pre'][i] != df['gt'][i]:
|
||
|
success_count += 1
|
||
|
print("Attack Success Rate for {0} : {1:.1f}%".format(args.model_name, success_count/ 1000. * 100))
|
||
|
|
||
|
|