xiaolin_code/evaluate.py

72 lines
2.4 KiB
Python
Raw Normal View History

2024-07-04 17:09:13 +08:00
import warnings
warnings.filterwarnings("ignore")
import torch
import argparse
from torch.utils.data import DataLoader
import os
import pandas as pd
import time
from dataset import AdvDataset
from model import get_model
from utils import BASE_ADV_PATH, accuracy, AverageMeter
def arg_parse():
parser = argparse.ArgumentParser(description='')
parser.add_argument('--adv_path', type=str, default='', help='the path of adversarial examples.')
parser.add_argument('--gpu', type=str, default='0', help='gpu device.')
parser.add_argument('--batch_size', type=int, default=20, metavar='N',
help='input batch size for reference (default: 16)')
parser.add_argument('--model_name', type=str, default='', help='')
args = parser.parse_args()
args.adv_path = os.path.join(BASE_ADV_PATH, args.adv_path)
return args
if __name__ == '__main__':
args = arg_parse()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
dataset = AdvDataset(args.model_name, args.adv_path)
data_loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=0)
print (len(dataset))
model = get_model(args.model_name)
model.cuda()
model.eval()
top1 = AverageMeter()
top5 = AverageMeter()
batch_time = AverageMeter()
prediction = []
gts = []
with torch.no_grad():
end = time.time()
for batch_idx, batch_data in enumerate(data_loader):
batch_x = batch_data[0].cuda()
batch_y = batch_data[1].cuda()
batch_name = batch_data[2]
output = model(batch_x)
acc1, acc5 = accuracy(output.detach(), batch_y, topk=(1, 5))
top1.update(acc1.item(), batch_x.size(0))
top5.update(acc5.item(), batch_x.size(0))
batch_time.update(time.time() - end)
end = time.time()
_, pred = output.detach().topk(1, 1, True, True)
pred = pred.t()
prediction += list(torch.squeeze(pred.cpu()).numpy())
gts += list(batch_y.cpu().numpy())
success_count = 0
df = pd.DataFrame(columns = ['path', 'pre', 'gt'])
df['path'] = dataset.paths[:len(prediction)]
df['pre'] = prediction
df['gt'] = gts
for i in range(len(df['pre'])):
if df['pre'][i] != df['gt'][i]:
success_count += 1
print("Attack Success Rate for {0} : {1:.1f}%".format(args.model_name, success_count/ 1000. * 100))